pq_cache_6 / README.md
Bharatdeep-H's picture
Updated Weights
6cb0ace verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:3688
  - loss:MultipleNegativesRankingLoss
  - loss:CosineSimilarityLoss
base_model: jinaai/jina-embedding-b-en-v1
widget:
  - source_sentence: Am I invested in emerging markets?
    sentences:
      - Do I have any investments in emerging markets?
      - Do I have financials in my portfolio?
      - Show me my recommendations
  - source_sentence: how has my portfolio performed in the past 3 years
    sentences:
      - |
        Show me the geographic distribution of my investments
      - How can I improve my returns?
      - performance of my portfolio over the last 3 years
  - source_sentence: What percent of my holdings are in X?
    sentences:
      - What percentage of my portfolio is in X
      - Show my worst performing funds?
      - Are my ETFs giving better returns compare to my mutual funds?
  - source_sentence: How's my investments in stocks doing?
    sentences:
      - How is my stock portfolio performing?
      - Show my worst stocks?
      - Are there any hidden fees in my portfolio that I could reduce?
  - source_sentence: Can you show me my portfolio's returns for all the years?
    sentences:
      - Need to change my risk appetite
      - My portfolio returns over all the years
      - How is my portfolio doing?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: SentenceTransformer based on jinaai/jina-embedding-b-en-v1
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: test eval
          type: test-eval
        metrics:
          - type: cosine_accuracy@1
            value: 0.8699186991869918
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.989159891598916
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.994579945799458
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8699186991869918
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32971996386630537
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19891598915989162
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09999999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8699186991869918
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.989159891598916
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.994579945799458
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9468139420641406
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9285004516711834
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9285004516711834
            name: Cosine Map@100

SentenceTransformer based on jinaai/jina-embedding-b-en-v1

This is a sentence-transformers model finetuned from jinaai/jina-embedding-b-en-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: jinaai/jina-embedding-b-en-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: T5EncoderModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    "Can you show me my portfolio's returns for all the years?",
    'My portfolio returns over all the years',
    'Need to change my risk appetite',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8699
cosine_accuracy@3 0.9892
cosine_accuracy@5 0.9946
cosine_accuracy@10 1.0
cosine_precision@1 0.8699
cosine_precision@3 0.3297
cosine_precision@5 0.1989
cosine_precision@10 0.1
cosine_recall@1 0.8699
cosine_recall@3 0.9892
cosine_recall@5 0.9946
cosine_recall@10 1.0
cosine_ndcg@10 0.9468
cosine_mrr@10 0.9285
cosine_map@100 0.9285

Training Details

Training Datasets

Unnamed Dataset

  • Size: 1,844 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 4 tokens
    • mean: 11.37 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 10.0 tokens
    • max: 33 tokens
    • min: 1.0
    • mean: 1.0
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    what can I do to improve my portfolio? is there any room for improvement in my portfolio 1.0
    I want to know which investments are the highest risk. Which of my investments have the highest risk? 1.0
    Can you tell me the expected returns on my portfolio? What is the expected return of my portfolio? 1.0
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Unnamed Dataset

  • Size: 1,844 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 4 tokens
    • mean: 11.35 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 10.19 tokens
    • max: 33 tokens
    • min: 1.0
    • mean: 1.0
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    Show me how much I have in X Show my X exposure 1.0
    Please provide the weekly performance of my portfolio. What is the performance of my portfolio over the last week? 1.0
    I want to know my asset allocation. What is my asset allocation? 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 10
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss test-eval_cosine_ndcg@10
1.0 116 - 0.9028
2.0 232 - 0.9149
3.0 348 - 0.9263
4.0 464 - 0.9335
4.3103 500 0.2052 0.9352
5.0 580 - 0.9361
6.0 696 - 0.9385
7.0 812 - 0.9437
8.0 928 - 0.9468

Framework Versions

  • Python: 3.12.5
  • Sentence Transformers: 3.4.1
  • Transformers: 4.49.0
  • PyTorch: 2.6.0
  • Accelerate: 1.5.2
  • Datasets: 3.4.1
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}