SentenceTransformer based on NovaSearch/stella_en_400M_v5

This is a sentence-transformers model finetuned from NovaSearch/stella_en_400M_v5 on the csv dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: NovaSearch/stella_en_400M_v5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • csv

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 1024, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Bharatdeep-H/stella_finetuned_en_dataset_to_mine_negatives_from")
# Run inference
sentences = [
    'day I was acquitted 12/12/12 i hocus45th GP SERVICES USA CDC CENTERS FOR DISH CONTROL AND P EXCLUSIVE: Per the CDC There Are Nearly Twice As Many Vaccine Related Deaths SO FAR in 2021 (1,755) Than All the Vaccine Deaths this Past Decade (994) For information about vaccines. visit who.int.',
    '“Thousands of COVID Vaccine Injuries and 13 U.S. Deaths Reported in December Alone”; “In December, 3,916 COVID vaccine-related adverse events, including 13 deaths, were reported to VAERS”',
    'Side effects of the first published vaccine According to Pfizer documents, 1,200 deaths.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9714

Training Details

Training Dataset

csv

  • Dataset: csv
  • Size: 164,619 training samples
  • Columns: query, answer, and negative
  • Approximate statistics based on the first 1000 samples:
    query answer negative
    type string string string
    details
    • min: 5 tokens
    • mean: 83.66 tokens
    • max: 512 tokens
    • min: 6 tokens
    • mean: 19.17 tokens
    • max: 141 tokens
    • min: 6 tokens
    • mean: 18.69 tokens
    • max: 120 tokens
  • Samples:
    query answer negative
    YEAST EXTRACK C DDees.co NO AFTER 40 YEARS OF RESEARCH, THERE IS A VACCINE AGAINST AIDS AFTER 76 YEARS OF RESEARCH, NO THERE IS A VACCINE AGAINST INFLUENZA AFTER 100 YEARS OF RESEARCH, NO THERE IS A VACCINE AGAINST CANCER BUT AFTER ONLY 6 MONTHS THERE IS A VACCINE AGAINST A "VIRUS" THAT APPEARED "FROM SUDDEN" AND THOSE WHO After years of research there is no vaccine against AIDS, cancer and influenza, but in 6 months there is a vaccine against covid-19 Chronology of decline in vaccine effectiveness shows that immunizers are not effective
    Donald J. Trump [USER] Trump We have reports of NIGERIA supporting Iran ACTIVELY and PASSIVELY....just got of the phone with secretary Pompeo....the USA MUST and WILL respond to terrorist nations IMMEDIATELY! 12:11 AM - 08 Jan 2020 244,391 Retweets 319,284 Likes 167K [244K Follow 319K US President Donald Trump threatens to attack Nigeria Vice President of the United States Mike Pence unfollowed President Donald Trump on Twitter and put a picture of Joe Biden and Kamala Harris on the profile cover
    4 k 40 years worth of research... *no vaccine for HIV cancer MA At least 100 years of research...no vaccine for Ongoing research... no vaccine for the common cold Less than a year for a Covid vaccine? I think I'll pass on that shot!! PIC COLLAGE Vaccines for HIV, cold and cancer should deter you from getting the Covid-19 vaccine Anticovid vaccines cause deterioration of the immune system and AIDS
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Evaluation Dataset

csv

  • Dataset: csv
  • Size: 164,619 evaluation samples
  • Columns: query, answer, and negative
  • Approximate statistics based on the first 1000 samples:
    query answer negative
    type string string string
    details
    • min: 5 tokens
    • mean: 73.2 tokens
    • max: 512 tokens
    • min: 5 tokens
    • mean: 19.27 tokens
    • max: 103 tokens
    • min: 5 tokens
    • mean: 19.3 tokens
    • max: 179 tokens
  • Samples:
    query answer negative
    --- Nora Al Riyadh Tik Tok Replying to [USER] A restaurant in Riyadh in one of the malls, the opening of the meal is free, of course, Corona in the farthest corner is surprising Video of Rakhi Sawant wearing a hijab to support protestors in Karnataka
    SQUID FOR BRAZIL BELTER SALT Corumbau pasil Milk Lula expelled from the city of Itanagrà in Bahia in May 2021. The Army had to provide security. All workers in Gardenia Philippines bread factory COVID-19 positive in July 2020
    I just ran out of words William Barr, Attorney General of the America literally most important person of all the American court system just publicly denounced that there has been electoral fraud 2rad10 TM [USER].6h US Attorney General William Barr denounces Vote-by-mail fraud. OM BLITZER [USER] THE WITH THE WITH SITUATION WOLFOOTION WOLF S BLITZE ROOM OUTZER TH HE WITH DERNIE CNN EXCLUSIVE Jimmy Carter & James Baker WOLF ONE-ON-ONE WITH ATTORNEY GENERAL WILLIAM BARR CAN WELL DEEST The US attorney general denounces that there has been electoral fraud Hillary Clinton appeared before the US justice on June 2, 2020
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 2
  • learning_rate: 3e-05
  • max_steps: 4000
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.2
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 2
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3.0
  • max_steps: 4000
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss cosine_accuracy
0.0016 100 1.6958 - -
0.0032 200 1.3647 - -
0.0049 300 1.1698 - -
0.0065 400 0.8551 - -
0.0081 500 0.8275 - -
0.0097 600 0.8878 - -
0.0113 700 0.9717 - -
0.0130 800 1.0219 - -
0.0146 900 0.9074 - -
0.0162 1000 0.903 0.8201 0.9452
0.0178 1100 0.9236 - -
0.0194 1200 0.7935 - -
0.0211 1300 1.0483 - -
0.0227 1400 1.0878 - -
0.0243 1500 0.9258 - -
0.0259 1600 1.011 - -
0.0275 1700 0.7785 - -
0.0292 1800 0.7643 - -
0.0308 1900 0.9918 - -
0.0324 2000 0.7941 0.7678 0.9387
0.0340 2100 1.106 - -
0.0356 2200 0.7571 - -
0.0373 2300 0.6687 - -
0.0389 2400 0.6914 - -
0.0405 2500 0.5925 - -
0.0421 2600 0.8085 - -
0.0437 2700 0.5775 - -
0.0454 2800 0.5051 - -
0.0470 2900 0.6894 - -
0.0486 3000 0.4202 0.4875 0.9667
0.0502 3100 0.4704 - -
0.0518 3200 0.4511 - -
0.0535 3300 0.3991 - -
0.0551 3400 0.4166 - -
0.0567 3500 0.3402 - -
0.0583 3600 0.6621 - -
0.0599 3700 0.5999 - -
0.0616 3800 0.443 - -
0.0632 3900 0.6503 - -
0.0648 4000 0.42 0.4156 0.9714

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 3.3.1
  • Transformers: 4.49.0
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.4.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Downloads last month
10
Safetensors
Model size
434M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Bharatdeep-H/stella_finetuned_en_dataset_to_mine_negatives_from

Finetuned
(9)
this model

Evaluation results