SentenceTransformer based on NovaSearch/stella_en_400M_v5
This is a sentence-transformers model finetuned from NovaSearch/stella_en_400M_v5 on the csv dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: NovaSearch/stella_en_400M_v5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Bharatdeep-H/stella_finetuned_en_dataset_to_mine_negatives_from")
# Run inference
sentences = [
'day I was acquitted 12/12/12 i hocus45th GP SERVICES USA CDC CENTERS FOR DISH CONTROL AND P EXCLUSIVE: Per the CDC There Are Nearly Twice As Many Vaccine Related Deaths SO FAR in 2021 (1,755) Than All the Vaccine Deaths this Past Decade (994) For information about vaccines. visit who.int.',
'“Thousands of COVID Vaccine Injuries and 13 U.S. Deaths Reported in December Alone”; “In December, 3,916 COVID vaccine-related adverse events, including 13 deaths, were reported to VAERS”',
'Side effects of the first published vaccine According to Pfizer documents, 1,200 deaths.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9714 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 164,619 training samples
- Columns:
query
,answer
, andnegative
- Approximate statistics based on the first 1000 samples:
query answer negative type string string string details - min: 5 tokens
- mean: 83.66 tokens
- max: 512 tokens
- min: 6 tokens
- mean: 19.17 tokens
- max: 141 tokens
- min: 6 tokens
- mean: 18.69 tokens
- max: 120 tokens
- Samples:
query answer negative YEAST EXTRACK C DDees.co NO AFTER 40 YEARS OF RESEARCH, THERE IS A VACCINE AGAINST AIDS AFTER 76 YEARS OF RESEARCH, NO THERE IS A VACCINE AGAINST INFLUENZA AFTER 100 YEARS OF RESEARCH, NO THERE IS A VACCINE AGAINST CANCER BUT AFTER ONLY 6 MONTHS THERE IS A VACCINE AGAINST A "VIRUS" THAT APPEARED "FROM SUDDEN" AND THOSE WHO
After years of research there is no vaccine against AIDS, cancer and influenza, but in 6 months there is a vaccine against covid-19
Chronology of decline in vaccine effectiveness shows that immunizers are not effective
Donald J. Trump [USER] Trump We have reports of NIGERIA supporting Iran ACTIVELY and PASSIVELY....just got of the phone with secretary Pompeo....the USA MUST and WILL respond to terrorist nations IMMEDIATELY! 12:11 AM - 08 Jan 2020 244,391 Retweets 319,284 Likes 167K [244K Follow 319K
US President Donald Trump threatens to attack Nigeria
Vice President of the United States Mike Pence unfollowed President Donald Trump on Twitter and put a picture of Joe Biden and Kamala Harris on the profile cover
4 k 40 years worth of research... *no vaccine for HIV cancer MA At least 100 years of research...no vaccine for Ongoing research... no vaccine for the common cold Less than a year for a Covid vaccine? I think I'll pass on that shot!! PIC COLLAGE
Vaccines for HIV, cold and cancer should deter you from getting the Covid-19 vaccine
Anticovid vaccines cause deterioration of the immune system and AIDS
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Evaluation Dataset
csv
- Dataset: csv
- Size: 164,619 evaluation samples
- Columns:
query
,answer
, andnegative
- Approximate statistics based on the first 1000 samples:
query answer negative type string string string details - min: 5 tokens
- mean: 73.2 tokens
- max: 512 tokens
- min: 5 tokens
- mean: 19.27 tokens
- max: 103 tokens
- min: 5 tokens
- mean: 19.3 tokens
- max: 179 tokens
- Samples:
query answer negative --- Nora Al Riyadh Tik Tok Replying to [USER]
A restaurant in Riyadh in one of the malls, the opening of the meal is free, of course, Corona in the farthest corner is surprising
Video of Rakhi Sawant wearing a hijab to support protestors in Karnataka
SQUID FOR BRAZIL BELTER SALT Corumbau pasil Milk
Lula expelled from the city of Itanagrà in Bahia in May 2021. The Army had to provide security.
All workers in Gardenia Philippines bread factory COVID-19 positive in July 2020
I just ran out of words William Barr, Attorney General of the America literally most important person of all the American court system just publicly denounced that there has been electoral fraud 2rad10 TM [USER].6h US Attorney General William Barr denounces Vote-by-mail fraud. OM BLITZER [USER] THE WITH THE WITH SITUATION WOLFOOTION WOLF S BLITZE ROOM OUTZER TH HE WITH DERNIE CNN EXCLUSIVE Jimmy Carter & James Baker WOLF ONE-ON-ONE WITH ATTORNEY GENERAL WILLIAM BARR CAN WELL DEEST
The US attorney general denounces that there has been electoral fraud
Hillary Clinton appeared before the US justice on June 2, 2020
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 2learning_rate
: 3e-05max_steps
: 4000lr_scheduler_type
: cosinewarmup_ratio
: 0.2bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 2per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: 4000lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
---|---|---|---|---|
0.0016 | 100 | 1.6958 | - | - |
0.0032 | 200 | 1.3647 | - | - |
0.0049 | 300 | 1.1698 | - | - |
0.0065 | 400 | 0.8551 | - | - |
0.0081 | 500 | 0.8275 | - | - |
0.0097 | 600 | 0.8878 | - | - |
0.0113 | 700 | 0.9717 | - | - |
0.0130 | 800 | 1.0219 | - | - |
0.0146 | 900 | 0.9074 | - | - |
0.0162 | 1000 | 0.903 | 0.8201 | 0.9452 |
0.0178 | 1100 | 0.9236 | - | - |
0.0194 | 1200 | 0.7935 | - | - |
0.0211 | 1300 | 1.0483 | - | - |
0.0227 | 1400 | 1.0878 | - | - |
0.0243 | 1500 | 0.9258 | - | - |
0.0259 | 1600 | 1.011 | - | - |
0.0275 | 1700 | 0.7785 | - | - |
0.0292 | 1800 | 0.7643 | - | - |
0.0308 | 1900 | 0.9918 | - | - |
0.0324 | 2000 | 0.7941 | 0.7678 | 0.9387 |
0.0340 | 2100 | 1.106 | - | - |
0.0356 | 2200 | 0.7571 | - | - |
0.0373 | 2300 | 0.6687 | - | - |
0.0389 | 2400 | 0.6914 | - | - |
0.0405 | 2500 | 0.5925 | - | - |
0.0421 | 2600 | 0.8085 | - | - |
0.0437 | 2700 | 0.5775 | - | - |
0.0454 | 2800 | 0.5051 | - | - |
0.0470 | 2900 | 0.6894 | - | - |
0.0486 | 3000 | 0.4202 | 0.4875 | 0.9667 |
0.0502 | 3100 | 0.4704 | - | - |
0.0518 | 3200 | 0.4511 | - | - |
0.0535 | 3300 | 0.3991 | - | - |
0.0551 | 3400 | 0.4166 | - | - |
0.0567 | 3500 | 0.3402 | - | - |
0.0583 | 3600 | 0.6621 | - | - |
0.0599 | 3700 | 0.5999 | - | - |
0.0616 | 3800 | 0.443 | - | - |
0.0632 | 3900 | 0.6503 | - | - |
0.0648 | 4000 | 0.42 | 0.4156 | 0.9714 |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.3.1
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Bharatdeep-H/stella_finetuned_en_dataset_to_mine_negatives_from
Base model
NovaSearch/stella_en_400M_v5