SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v2.0

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m-v2.0. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-m-v2.0
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'GteModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("BjarneNPO-01_09_2025_15_09_37")
# Run inference
queries = [
    "Ein Vater taucht nicht auf bei den Eltern im Elternbeirat \r\n\r\nAu\u00dferdem auf die Kinder mit archivierten Angeh\u00f6rigen hingewiesen und ihr gezeigt",
]
documents = [
    'Weil er keinen Zugang zur EAPP hat, Außerdem auf die Kinder mit archivierten Angehörigen hingewiesen und ihr gezeigt wie sie das lösen kann',
    '1. Vorlage da. Userin auch gezeigt wie sie die verwanden kann\r\n2. Als Wunsch weitergegeben.',
    'In der Kinderliste haben Kinder gefehlt. Userin muss die Daten in der Kinderliste hinterlegen.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.4964,  0.1370, -0.0431]])

Evaluation

Metrics

Information Retrieval

  • Dataset: Snowflake/snowflake-arctic-embed-m-v2.0
  • Evaluated with scripts.InformationRetrievalEvaluatorCustom.InformationRetrievalEvaluatorCustom with these parameters:
    {
        "query_prompt_name": "query",
        "corpus_prompt_name": "query"
    }
    
Metric Value
cosine_accuracy@1 0.1159
cosine_accuracy@3 0.6377
cosine_accuracy@5 0.7536
cosine_accuracy@10 0.8841
cosine_precision@1 0.1159
cosine_precision@3 0.3382
cosine_precision@5 0.3362
cosine_precision@10 0.271
cosine_recall@1 0.0152
cosine_recall@3 0.0813
cosine_recall@5 0.1281
cosine_recall@10 0.1965
cosine_ndcg@10 0.291
cosine_mrr@10 0.4015
cosine_map@100 0.1935

Training Details

Training Dataset

Unnamed Dataset

  • Size: 72,349 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 6 tokens
    • mean: 49.26 tokens
    • max: 4339 tokens
    • min: 6 tokens
    • mean: 28.66 tokens
    • max: 238 tokens
  • Samples:
    query answer
    Nun ist die Monatsmeldung erfolgt, aber rote Ausrufezeichen tauchen auf. Userin an das JA verwiesen, diese müssten ihr die Schloss-Monate zur Überarbeitung im Kibiz.web zurückgeben. Userin dazu empfohlen, die Kinder die nicht in kitaplus sind, aber in Kibiz.web - im KiBiz.web zu entfernen, wenn diese nicht vorhanden sind.
    Die Feiertage in den Stammdaten stimmen nicht. Es besteht bereits ein Ticket dafür.
    Abrechnung kann nicht final freigegeben werden, es wird aber keiner Fehlermeldung angeziegt im Hintergrund ist eine Fehlermeldung zu sehen. An Entwickler weitergeleitet.

    Korrektur vorgenommen.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • gradient_accumulation_steps: 4
  • learning_rate: 4e-05
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.08
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.08
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss Snowflake/snowflake-arctic-embed-m-v2.0_cosine_ndcg@10
0.0177 10 2.222 -
0.0354 20 2.1657 -
0.0531 30 1.9611 -
0.0708 40 1.9064 -
0.0885 50 1.7658 -
0.1061 60 1.6493 -
0.1238 70 1.7006 -
0.1415 80 1.5747 -
0.1592 90 1.4265 -
0.1769 100 1.3506 -
0.1946 110 1.349 -
0.2123 120 1.2742 -
0.2300 130 1.1629 -
0.2477 140 1.173 -
0.2654 150 1.1773 -
0.2831 160 1.1101 -
0.3008 170 1.0419 -
0.3184 180 1.1084 -
0.3361 190 1.0667 -
0.3538 200 1.0174 -
0.3715 210 1.0776 -
0.3892 220 0.9883 -
0.4069 230 0.9751 -
0.4246 240 0.9467 -
0.4423 250 0.8335 -
0.4600 260 0.9196 -
0.4777 270 0.9604 -
0.4954 280 0.9193 -
0.5130 290 0.8227 -
0.5307 300 0.8538 -
0.5484 310 0.867 -
0.5661 320 0.8176 -
0.5838 330 0.8119 -
0.6015 340 0.8154 -
0.6192 350 0.8091 -
0.6369 360 0.7533 -
0.6546 370 0.7948 -
0.6723 380 0.792 -
0.6900 390 0.7766 -
0.7077 400 0.7901 -
0.7253 410 0.7517 -
0.7430 420 0.7825 -
0.7607 430 0.7635 -
0.7784 440 0.8115 -
0.7961 450 0.7359 -
0.8138 460 0.7824 -
0.8315 470 0.7623 -
0.8492 480 0.7299 -
0.8669 490 0.7406 -
0.8846 500 0.7614 -
0.9023 510 0.6883 -
0.9199 520 0.6846 -
0.9376 530 0.6769 -
0.9553 540 0.7502 -
0.9730 550 0.7281 -
0.9907 560 0.6141 -
1.0 566 - 0.2907
1.0071 570 0.6137 -
1.0248 580 0.5913 -
1.0425 590 0.5994 -
1.0602 600 0.5915 -
1.0778 610 0.594 -
1.0955 620 0.576 -
1.1132 630 0.5402 -
1.1309 640 0.5558 -
1.1486 650 0.5526 -
1.1663 660 0.5585 -
1.1840 670 0.5472 -
1.2017 680 0.5427 -
1.2194 690 0.5229 -
1.2371 700 0.5307 -
1.2548 710 0.5319 -
1.2724 720 0.5614 -
1.2901 730 0.5825 -
1.3078 740 0.5405 -
1.3255 750 0.5867 -
1.3432 760 0.57 -
1.3609 770 0.5272 -
1.3786 780 0.5566 -
1.3963 790 0.5371 -
1.4140 800 0.5084 -
1.4317 810 0.4834 -
1.4494 820 0.5608 -
1.4670 830 0.5439 -
1.4847 840 0.5198 -
1.5024 850 0.5187 -
1.5201 860 0.5295 -
1.5378 870 0.5075 -
1.5555 880 0.5612 -
1.5732 890 0.4302 -
1.5909 900 0.5036 -
1.6086 910 0.5535 -
1.6263 920 0.5629 -
1.6440 930 0.4835 -
1.6617 940 0.5806 -
1.6793 950 0.5547 -
1.6970 960 0.5008 -
1.7147 970 0.5518 -
1.7324 980 0.4992 -
1.7501 990 0.4895 -
1.7678 1000 0.4911 -
1.7855 1010 0.4759 -
1.8032 1020 0.5082 -
1.8209 1030 0.5329 -
1.8386 1040 0.468 -
1.8563 1050 0.4719 -
1.8739 1060 0.4937 -
1.8916 1070 0.4628 -
1.9093 1080 0.4668 -
1.9270 1090 0.4645 -
1.9447 1100 0.4933 -
1.9624 1110 0.5119 -
1.9801 1120 0.5162 -
1.9978 1130 0.4628 -
2.0 1132 - 0.2949
2.0142 1140 0.406 -
2.0318 1150 0.384 -
2.0495 1160 0.4111 -
2.0672 1170 0.3909 -
2.0849 1180 0.4097 -
2.1026 1190 0.4208 -
2.1203 1200 0.4042 -
2.1380 1210 0.3715 -
2.1557 1220 0.4217 -
2.1734 1230 0.381 -
2.1911 1240 0.3838 -
2.2088 1250 0.3797 -
2.2264 1260 0.3548 -
2.2441 1270 0.4092 -
2.2618 1280 0.4176 -
2.2795 1290 0.4105 -
2.2972 1300 0.3414 -
2.3149 1310 0.3782 -
2.3326 1320 0.3626 -
2.3503 1330 0.3897 -
2.3680 1340 0.4173 -
2.3857 1350 0.376 -
2.4034 1360 0.37 -
2.4211 1370 0.3827 -
2.4387 1380 0.3509 -
2.4564 1390 0.3725 -
2.4741 1400 0.3447 -
2.4918 1410 0.3882 -
2.5095 1420 0.3764 -
2.5272 1430 0.408 -
2.5449 1440 0.384 -
2.5626 1450 0.386 -
2.5803 1460 0.3892 -
2.5980 1470 0.3337 -
2.6157 1480 0.4048 -
2.6333 1490 0.3788 -
2.6510 1500 0.3814 -
2.6687 1510 0.3978 -
2.6864 1520 0.3505 -
2.7041 1530 0.4267 -
2.7218 1540 0.3549 -
2.7395 1550 0.3723 -
2.7572 1560 0.3883 -
2.7749 1570 0.3714 -
2.7926 1580 0.3275 -
2.8103 1590 0.3672 -
2.8280 1600 0.3915 -
2.8456 1610 0.3476 -
2.8633 1620 0.3962 -
2.8810 1630 0.4102 -
2.8987 1640 0.3944 -
2.9164 1650 0.4045 -
2.9341 1660 0.4133 -
2.9518 1670 0.3768 -
2.9695 1680 0.3845 -
2.9872 1690 0.4359 -
3.0 1698 - 0.2910
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.11
  • Sentence Transformers: 5.1.0
  • Transformers: 4.55.2
  • PyTorch: 2.8.0+cu129
  • Accelerate: 1.10.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.4

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
15
Safetensors
Model size
305M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for BjarneNPO/BjarneNPO-01_09_2025_15_09_37

Finetuned
(26)
this model

Evaluation results

  • Cosine Accuracy@1 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.116
  • Cosine Accuracy@3 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.638
  • Cosine Accuracy@5 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.754
  • Cosine Accuracy@10 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.884
  • Cosine Precision@1 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.116
  • Cosine Precision@3 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.338
  • Cosine Precision@5 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.336
  • Cosine Precision@10 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.271
  • Cosine Recall@1 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.015
  • Cosine Recall@3 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.081