SentenceTransformer based on Lajavaness/bilingual-embedding-base
This is a sentence-transformers model finetuned from Lajavaness/bilingual-embedding-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Lajavaness/bilingual-embedding-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BilingualModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("BjarneNPO-01_09_2025_15_47_05")
# Run inference
queries = [
"Ein Vater taucht nicht auf bei den Eltern im Elternbeirat \r\n\r\nAu\u00dferdem auf die Kinder mit archivierten Angeh\u00f6rigen hingewiesen und ihr gezeigt",
]
documents = [
'Weil er keinen Zugang zur EAPP hat, Außerdem auf die Kinder mit archivierten Angehörigen hingewiesen und ihr gezeigt wie sie das lösen kann',
'1. Vorlage da. Userin auch gezeigt wie sie die verwanden kann\r\n2. Als Wunsch weitergegeben.',
'In der Kinderliste haben Kinder gefehlt. Userin muss die Daten in der Kinderliste hinterlegen.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.6142, 0.1926, 0.0079]])
Evaluation
Metrics
Information Retrieval
- Dataset:
Lajavaness/bilingual-embedding-base
- Evaluated with
scripts.InformationRetrievalEvaluatorCustom.InformationRetrievalEvaluatorCustom
with these parameters:{ "query_prompt_name": "query", "corpus_prompt_name": "query" }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1159 |
cosine_accuracy@3 | 0.6667 |
cosine_accuracy@5 | 0.7246 |
cosine_accuracy@10 | 0.8406 |
cosine_precision@1 | 0.1159 |
cosine_precision@3 | 0.3333 |
cosine_precision@5 | 0.3188 |
cosine_precision@10 | 0.213 |
cosine_recall@1 | 0.0152 |
cosine_recall@3 | 0.0791 |
cosine_recall@5 | 0.1184 |
cosine_recall@10 | 0.1622 |
cosine_ndcg@10 | 0.2458 |
cosine_mrr@10 | 0.3924 |
cosine_map@100 | 0.1543 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 72,349 training samples
- Columns:
query
andanswer
- Approximate statistics based on the first 1000 samples:
query answer type string string details - min: 6 tokens
- mean: 39.05 tokens
- max: 512 tokens
- min: 6 tokens
- mean: 28.66 tokens
- max: 238 tokens
- Samples:
query answer Nun ist die Monatsmeldung erfolgt, aber rote Ausrufezeichen tauchen auf.
Userin an das JA verwiesen, diese müssten ihr die Schloss-Monate zur Überarbeitung im Kibiz.web zurückgeben. Userin dazu empfohlen, die Kinder die nicht in kitaplus sind, aber in Kibiz.web - im KiBiz.web zu entfernen, wenn diese nicht vorhanden sind.
Die Feiertage in den Stammdaten stimmen nicht.
Es besteht bereits ein Ticket dafür.
Abrechnung kann nicht final freigegeben werden, es wird aber keiner Fehlermeldung angeziegt
im Hintergrund ist eine Fehlermeldung zu sehen. An Entwickler weitergeleitet.
Korrektur vorgenommen. - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 4learning_rate
: 4e-05lr_scheduler_type
: cosinewarmup_ratio
: 0.08bf16
: Truetf32
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 4e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.08warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Click to expand
Epoch | Step | Training Loss | Lajavaness/bilingual-embedding-base_cosine_ndcg@10 |
---|---|---|---|
0.0088 | 10 | 1.8616 | - |
0.0177 | 20 | 1.7114 | - |
0.0265 | 30 | 1.6738 | - |
0.0354 | 40 | 1.4837 | - |
0.0442 | 50 | 1.3178 | - |
0.0531 | 60 | 1.371 | - |
0.0619 | 70 | 1.3043 | - |
0.0708 | 80 | 1.2882 | - |
0.0796 | 90 | 1.2437 | - |
0.0885 | 100 | 1.119 | - |
0.0973 | 110 | 1.0922 | - |
0.1061 | 120 | 1.0818 | - |
0.1150 | 130 | 1.1949 | - |
0.1238 | 140 | 1.1136 | - |
0.1327 | 150 | 1.0514 | - |
0.1415 | 160 | 1.0428 | - |
0.1504 | 170 | 0.9703 | - |
0.1592 | 180 | 0.943 | - |
0.1681 | 190 | 0.9617 | - |
0.1769 | 200 | 0.9115 | - |
0.1858 | 210 | 0.9085 | - |
0.1946 | 220 | 0.965 | - |
0.2034 | 230 | 0.8556 | - |
0.2123 | 240 | 0.882 | - |
0.2211 | 250 | 0.8998 | - |
0.2300 | 260 | 0.7686 | - |
0.2388 | 270 | 0.7966 | - |
0.2477 | 280 | 0.8272 | - |
0.2565 | 290 | 0.7621 | - |
0.2654 | 300 | 0.8954 | - |
0.2742 | 310 | 0.8417 | - |
0.2831 | 320 | 0.7558 | - |
0.2919 | 330 | 0.7681 | - |
0.3008 | 340 | 0.7095 | - |
0.3096 | 350 | 0.8214 | - |
0.3184 | 360 | 0.7662 | - |
0.3273 | 370 | 0.7945 | - |
0.3361 | 380 | 0.7047 | - |
0.3450 | 390 | 0.7196 | - |
0.3538 | 400 | 0.7414 | - |
0.3627 | 410 | 0.8297 | - |
0.3715 | 420 | 0.6885 | - |
0.3804 | 430 | 0.7414 | - |
0.3892 | 440 | 0.6659 | - |
0.3981 | 450 | 0.6698 | - |
0.4069 | 460 | 0.797 | - |
0.4157 | 470 | 0.6491 | - |
0.4246 | 480 | 0.6641 | - |
0.4334 | 490 | 0.6027 | - |
0.4423 | 500 | 0.5888 | - |
0.4511 | 510 | 0.6977 | - |
0.4600 | 520 | 0.654 | - |
0.4688 | 530 | 0.6339 | - |
0.4777 | 540 | 0.6638 | - |
0.4865 | 550 | 0.6627 | - |
0.4954 | 560 | 0.646 | - |
0.5042 | 570 | 0.5376 | - |
0.5130 | 580 | 0.6076 | - |
0.5219 | 590 | 0.5645 | - |
0.5307 | 600 | 0.5923 | - |
0.5396 | 610 | 0.6137 | - |
0.5484 | 620 | 0.5811 | - |
0.5573 | 630 | 0.5592 | - |
0.5661 | 640 | 0.5504 | - |
0.5750 | 650 | 0.5623 | - |
0.5838 | 660 | 0.6452 | - |
0.5927 | 670 | 0.6171 | - |
0.6015 | 680 | 0.6278 | - |
0.6103 | 690 | 0.5743 | - |
0.6192 | 700 | 0.5452 | - |
0.6280 | 710 | 0.4978 | - |
0.6369 | 720 | 0.578 | - |
0.6457 | 730 | 0.6289 | - |
0.6546 | 740 | 0.566 | - |
0.6634 | 750 | 0.5309 | - |
0.6723 | 760 | 0.5971 | - |
0.6811 | 770 | 0.5543 | - |
0.6900 | 780 | 0.5014 | - |
0.6988 | 790 | 0.5802 | - |
0.7077 | 800 | 0.505 | - |
0.7165 | 810 | 0.5157 | - |
0.7253 | 820 | 0.5305 | - |
0.7342 | 830 | 0.5251 | - |
0.7430 | 840 | 0.5914 | - |
0.7519 | 850 | 0.4978 | - |
0.7607 | 860 | 0.564 | - |
0.7696 | 870 | 0.6057 | - |
0.7784 | 880 | 0.5818 | - |
0.7873 | 890 | 0.5446 | - |
0.7961 | 900 | 0.4906 | - |
0.8050 | 910 | 0.5329 | - |
0.8138 | 920 | 0.5824 | - |
0.8226 | 930 | 0.4795 | - |
0.8315 | 940 | 0.5256 | - |
0.8403 | 950 | 0.5095 | - |
0.8492 | 960 | 0.537 | - |
0.8580 | 970 | 0.5647 | - |
0.8669 | 980 | 0.4999 | - |
0.8757 | 990 | 0.5893 | - |
0.8846 | 1000 | 0.545 | - |
0.8934 | 1010 | 0.4825 | - |
0.9023 | 1020 | 0.4818 | - |
0.9111 | 1030 | 0.4534 | - |
0.9199 | 1040 | 0.4446 | - |
0.9288 | 1050 | 0.4458 | - |
0.9376 | 1060 | 0.4853 | - |
0.9465 | 1070 | 0.5503 | - |
0.9553 | 1080 | 0.5062 | - |
0.9642 | 1090 | 0.4939 | - |
0.9730 | 1100 | 0.5046 | - |
0.9819 | 1110 | 0.4483 | - |
0.9907 | 1120 | 0.3975 | - |
0.9996 | 1130 | 0.4642 | - |
1.0 | 1131 | - | 0.3157 |
1.0080 | 1140 | 0.4285 | - |
1.0168 | 1150 | 0.4174 | - |
1.0257 | 1160 | 0.3378 | - |
1.0345 | 1170 | 0.3701 | - |
1.0433 | 1180 | 0.3748 | - |
1.0522 | 1190 | 0.4158 | - |
1.0610 | 1200 | 0.4101 | - |
1.0699 | 1210 | 0.3781 | - |
1.0787 | 1220 | 0.3894 | - |
1.0876 | 1230 | 0.376 | - |
1.0964 | 1240 | 0.3801 | - |
1.1053 | 1250 | 0.3979 | - |
1.1141 | 1260 | 0.3966 | - |
1.1230 | 1270 | 0.3756 | - |
1.1318 | 1280 | 0.4148 | - |
1.1406 | 1290 | 0.3799 | - |
1.1495 | 1300 | 0.3587 | - |
1.1583 | 1310 | 0.3533 | - |
1.1672 | 1320 | 0.431 | - |
1.1760 | 1330 | 0.3523 | - |
1.1849 | 1340 | 0.3849 | - |
1.1937 | 1350 | 0.3786 | - |
1.2026 | 1360 | 0.4214 | - |
1.2114 | 1370 | 0.3716 | - |
1.2203 | 1380 | 0.3705 | - |
1.2291 | 1390 | 0.3937 | - |
1.2379 | 1400 | 0.3357 | - |
1.2468 | 1410 | 0.3813 | - |
1.2556 | 1420 | 0.3437 | - |
1.2645 | 1430 | 0.3964 | - |
1.2733 | 1440 | 0.3486 | - |
1.2822 | 1450 | 0.3466 | - |
1.2910 | 1460 | 0.4585 | - |
1.2999 | 1470 | 0.4045 | - |
1.3087 | 1480 | 0.3246 | - |
1.3176 | 1490 | 0.3596 | - |
1.3264 | 1500 | 0.463 | - |
1.3352 | 1510 | 0.3828 | - |
1.3441 | 1520 | 0.4033 | - |
1.3529 | 1530 | 0.3536 | - |
1.3618 | 1540 | 0.3519 | - |
1.3706 | 1550 | 0.3802 | - |
1.3795 | 1560 | 0.341 | - |
1.3883 | 1570 | 0.403 | - |
1.3972 | 1580 | 0.356 | - |
1.4060 | 1590 | 0.387 | - |
1.4149 | 1600 | 0.2879 | - |
1.4237 | 1610 | 0.3129 | - |
1.4326 | 1620 | 0.3645 | - |
1.4414 | 1630 | 0.3047 | - |
1.4502 | 1640 | 0.3532 | - |
1.4591 | 1650 | 0.3941 | - |
1.4679 | 1660 | 0.3864 | - |
1.4768 | 1670 | 0.3459 | - |
1.4856 | 1680 | 0.3508 | - |
1.4945 | 1690 | 0.4104 | - |
1.5033 | 1700 | 0.3375 | - |
1.5122 | 1710 | 0.3382 | - |
1.5210 | 1720 | 0.3999 | - |
1.5299 | 1730 | 0.3569 | - |
1.5387 | 1740 | 0.3038 | - |
1.5475 | 1750 | 0.4384 | - |
1.5564 | 1760 | 0.3983 | - |
1.5652 | 1770 | 0.2834 | - |
1.5741 | 1780 | 0.3116 | - |
1.5829 | 1790 | 0.3986 | - |
1.5918 | 1800 | 0.3071 | - |
1.6006 | 1810 | 0.3731 | - |
1.6095 | 1820 | 0.3758 | - |
1.6183 | 1830 | 0.3577 | - |
1.6272 | 1840 | 0.3512 | - |
1.6360 | 1850 | 0.3402 | - |
1.6448 | 1860 | 0.304 | - |
1.6537 | 1870 | 0.4238 | - |
1.6625 | 1880 | 0.3789 | - |
1.6714 | 1890 | 0.3876 | - |
1.6802 | 1900 | 0.3903 | - |
1.6891 | 1910 | 0.3227 | - |
1.6979 | 1920 | 0.3305 | - |
1.7068 | 1930 | 0.3499 | - |
1.7156 | 1940 | 0.3752 | - |
1.7245 | 1950 | 0.3484 | - |
1.7333 | 1960 | 0.3431 | - |
1.7421 | 1970 | 0.3493 | - |
1.7510 | 1980 | 0.3575 | - |
1.7598 | 1990 | 0.3271 | - |
1.7687 | 2000 | 0.3677 | - |
1.7775 | 2010 | 0.2797 | - |
1.7864 | 2020 | 0.3162 | - |
1.7952 | 2030 | 0.2937 | - |
1.8041 | 2040 | 0.385 | - |
1.8129 | 2050 | 0.3424 | - |
1.8218 | 2060 | 0.3946 | - |
1.8306 | 2070 | 0.3037 | - |
1.8395 | 2080 | 0.2947 | - |
1.8483 | 2090 | 0.3514 | - |
1.8571 | 2100 | 0.3068 | - |
1.8660 | 2110 | 0.3146 | - |
1.8748 | 2120 | 0.347 | - |
1.8837 | 2130 | 0.2636 | - |
1.8925 | 2140 | 0.3446 | - |
1.9014 | 2150 | 0.2878 | - |
1.9102 | 2160 | 0.3289 | - |
1.9191 | 2170 | 0.3331 | - |
1.9279 | 2180 | 0.2465 | - |
1.9368 | 2190 | 0.3153 | - |
1.9456 | 2200 | 0.288 | - |
1.9544 | 2210 | 0.3376 | - |
1.9633 | 2220 | 0.3161 | - |
1.9721 | 2230 | 0.3392 | - |
1.9810 | 2240 | 0.369 | - |
1.9898 | 2250 | 0.3523 | - |
1.9987 | 2260 | 0.3278 | - |
2.0 | 2262 | - | 0.2584 |
2.0071 | 2270 | 0.2417 | - |
2.0159 | 2280 | 0.2456 | - |
2.0248 | 2290 | 0.2598 | - |
2.0336 | 2300 | 0.2601 | - |
2.0425 | 2310 | 0.2264 | - |
2.0513 | 2320 | 0.2535 | - |
2.0602 | 2330 | 0.2115 | - |
2.0690 | 2340 | 0.2711 | - |
2.0778 | 2350 | 0.2276 | - |
2.0867 | 2360 | 0.2686 | - |
2.0955 | 2370 | 0.2395 | - |
2.1044 | 2380 | 0.2729 | - |
2.1132 | 2390 | 0.2992 | - |
2.1221 | 2400 | 0.2424 | - |
2.1309 | 2410 | 0.2666 | - |
2.1398 | 2420 | 0.2342 | - |
2.1486 | 2430 | 0.2476 | - |
2.1575 | 2440 | 0.2902 | - |
2.1663 | 2450 | 0.2151 | - |
2.1751 | 2460 | 0.2207 | - |
2.1840 | 2470 | 0.2382 | - |
2.1928 | 2480 | 0.2389 | - |
2.2017 | 2490 | 0.2233 | - |
2.2105 | 2500 | 0.251 | - |
2.2194 | 2510 | 0.2016 | - |
2.2282 | 2520 | 0.2424 | - |
2.2371 | 2530 | 0.282 | - |
2.2459 | 2540 | 0.2559 | - |
2.2548 | 2550 | 0.2756 | - |
2.2636 | 2560 | 0.2355 | - |
2.2724 | 2570 | 0.2513 | - |
2.2813 | 2580 | 0.2527 | - |
2.2901 | 2590 | 0.2063 | - |
2.2990 | 2600 | 0.2197 | - |
2.3078 | 2610 | 0.2401 | - |
2.3167 | 2620 | 0.2773 | - |
2.3255 | 2630 | 0.2237 | - |
2.3344 | 2640 | 0.2128 | - |
2.3432 | 2650 | 0.2226 | - |
2.3521 | 2660 | 0.2638 | - |
2.3609 | 2670 | 0.2707 | - |
2.3697 | 2680 | 0.2553 | - |
2.3786 | 2690 | 0.2217 | - |
2.3874 | 2700 | 0.2469 | - |
2.3963 | 2710 | 0.2152 | - |
2.4051 | 2720 | 0.2151 | - |
2.4140 | 2730 | 0.2327 | - |
2.4228 | 2740 | 0.2947 | - |
2.4317 | 2750 | 0.1757 | - |
2.4405 | 2760 | 0.2609 | - |
2.4494 | 2770 | 0.2221 | - |
2.4582 | 2780 | 0.2089 | - |
2.4670 | 2790 | 0.2426 | - |
2.4759 | 2800 | 0.2414 | - |
2.4847 | 2810 | 0.1975 | - |
2.4936 | 2820 | 0.2701 | - |
2.5024 | 2830 | 0.2581 | - |
2.5113 | 2840 | 0.2544 | - |
2.5201 | 2850 | 0.2889 | - |
2.5290 | 2860 | 0.2458 | - |
2.5378 | 2870 | 0.2306 | - |
2.5467 | 2880 | 0.2588 | - |
2.5555 | 2890 | 0.2373 | - |
2.5644 | 2900 | 0.2202 | - |
2.5732 | 2910 | 0.2209 | - |
2.5820 | 2920 | 0.2358 | - |
2.5909 | 2930 | 0.1734 | - |
2.5997 | 2940 | 0.252 | - |
2.6086 | 2950 | 0.2345 | - |
2.6174 | 2960 | 0.266 | - |
2.6263 | 2970 | 0.2557 | - |
2.6351 | 2980 | 0.205 | - |
2.6440 | 2990 | 0.2916 | - |
2.6528 | 3000 | 0.2462 | - |
2.6617 | 3010 | 0.2953 | - |
2.6705 | 3020 | 0.2263 | - |
2.6793 | 3030 | 0.2357 | - |
2.6882 | 3040 | 0.243 | - |
2.6970 | 3050 | 0.2269 | - |
2.7059 | 3060 | 0.2431 | - |
2.7147 | 3070 | 0.239 | - |
2.7236 | 3080 | 0.1974 | - |
2.7324 | 3090 | 0.2343 | - |
2.7413 | 3100 | 0.253 | - |
2.7501 | 3110 | 0.2201 | - |
2.7590 | 3120 | 0.1923 | - |
2.7678 | 3130 | 0.2184 | - |
2.7766 | 3140 | 0.2426 | - |
2.7855 | 3150 | 0.207 | - |
2.7943 | 3160 | 0.2164 | - |
2.8032 | 3170 | 0.2062 | - |
2.8120 | 3180 | 0.2367 | - |
2.8209 | 3190 | 0.2759 | - |
2.8297 | 3200 | 0.2488 | - |
2.8386 | 3210 | 0.2222 | - |
2.8474 | 3220 | 0.2385 | - |
2.8563 | 3230 | 0.2378 | - |
2.8651 | 3240 | 0.2552 | - |
2.8739 | 3250 | 0.2267 | - |
2.8828 | 3260 | 0.2856 | - |
2.8916 | 3270 | 0.2385 | - |
2.9005 | 3280 | 0.2444 | - |
2.9093 | 3290 | 0.2225 | - |
2.9182 | 3300 | 0.3305 | - |
2.9270 | 3310 | 0.2349 | - |
2.9359 | 3320 | 0.266 | - |
2.9447 | 3330 | 0.2506 | - |
2.9536 | 3340 | 0.2426 | - |
2.9624 | 3350 | 0.2204 | - |
2.9713 | 3360 | 0.2202 | - |
2.9801 | 3370 | 0.2577 | - |
2.9889 | 3380 | 0.2664 | - |
2.9978 | 3390 | 0.2185 | - |
3.0 | 3393 | - | 0.2458 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.11
- Sentence Transformers: 5.1.0
- Transformers: 4.55.2
- PyTorch: 2.8.0+cu129
- Accelerate: 1.10.0
- Datasets: 3.6.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 16
Model tree for BjarneNPO/BjarneNPO-01_09_2025_15_47_05
Base model
Lajavaness/bilingual-embedding-baseEvaluation results
- Cosine Accuracy@1 on Lajavaness/bilingual embedding baseself-reported0.116
- Cosine Accuracy@3 on Lajavaness/bilingual embedding baseself-reported0.667
- Cosine Accuracy@5 on Lajavaness/bilingual embedding baseself-reported0.725
- Cosine Accuracy@10 on Lajavaness/bilingual embedding baseself-reported0.841
- Cosine Precision@1 on Lajavaness/bilingual embedding baseself-reported0.116
- Cosine Precision@3 on Lajavaness/bilingual embedding baseself-reported0.333
- Cosine Precision@5 on Lajavaness/bilingual embedding baseself-reported0.319
- Cosine Precision@10 on Lajavaness/bilingual embedding baseself-reported0.213
- Cosine Recall@1 on Lajavaness/bilingual embedding baseself-reported0.015
- Cosine Recall@3 on Lajavaness/bilingual embedding baseself-reported0.079