best_bvv_zh
best_bvv_zh is a conceptual bilingual (English + Chinese) transformer language model trained from scratch on a limited-size 9B-token corpus, as a demonstration of the frozen-embedding hypothesis for robust, language-agnostic and easily-combinable language models.
- Embedding matrix is frozen after visual-based (Unicode-morpheme) initialization.
- All transformer layers and output head are trainable.
Key features
Trained on small English+Chinese dataset.
Vocabulary: 131072 (Unicode/visual + frequent n-grams).
16-layer transformer, 1024 hidden dim, 32 heads.
Demonstrates that frozen, compositional, language-agnostic embeddings allow for stable representation learning and can be directly combined into Mixture-of-Experts (MoE) models.
Direct comparison to "unfrozen" version Bochkov/best_bvv_unfrozen_zh.
Intended use
- Academic and engineering demonstration.
- Proof-of-concept for multilingual/fusion/frozen-embedding MoE research.
- NOT intended or suitable for actual production generation or factual knowledge (corpus ~9B tokens only).
Model comparison (vs unfrozen baseline)
Model | Total Params | MMLU avg (%) | BLEU en-zh (%) | BLEU zh-en (%) |
---|---|---|---|---|
Bochkov/best_bvv_zh (frozen) | 0.5B | 19.4 | 1.41 | 7.78 |
Bochkov/best_bvv_unfrozen_zh (baseline) | 0.5B | 14.0 | 1.65 | 5.93 |
π§βπ¬ Citation & Concept
If you use or build upon this demo, please cite:
@misc{bochkov2025emergentsemanticstokenembeddings,
title={Emergent Semantics Beyond Token Embeddings: Transformer LMs with Frozen Visual Unicode Representations},
author={A. Bochkov},
year={2025},
eprint={2507.04886},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2507.04886},
}
@misc{bochkov2025growingtransformersmodularcomposition,
title={Growing Transformers: Modular Composition and Layer-wise Expansion on a Frozen Substrate},
author={A. Bochkov},
year={2025},
eprint={2507.07129},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2507.07129},
}
This work demonstrates that transformer blocks, not token embeddings, carry the semantic burden in LLMs β a step toward modular, fusable, multilingual LMs.
Example Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained('Bochkov/best_bvv_ru', trust_remote_code=True).to('cuda')
tokenizer = AutoTokenizer.from_pretrained('Bochkov/best_bvv_ru')
inputs = tokenizer("Hello, ΠΌΠΈΡ! ", return_tensors="pt").to('cuda')
outputs = model.generate(
**inputs,
max_new_tokens=100,
temperature=0.8,
top_k=50,
top_p=0.95,
do_sample=True
)
print(tokenizer.decode(outputs[0]))
- Downloads last month
- 13
Collection including Bochkov/best_bvv_zh
Evaluation results
- MMLU (average)self-reported19.420
- BLEU zh-enself-reported7.780