pro_bvv_unfrozen: 200M baseline LM (non-frozen embeddings)

Description

This is a baseline English language model (200M parameters) trained in the classical way with fully trainable token embeddings, provided for direct comparison with the conceptually frozen-embedding variant.

Training details

  • English corpus (~9B tokens), 10% SFT mixed-in.
  • All layers, including token embeddings, are trainable.
  • Hyperparameters and architecture match pro_bvv_en.

Evaluation

Task pro_bvv_unfrozen
MMLU 14.00% Β± 0.14%
ARC-e 24.09% Β± 0.78%
ARC-c 22.24% Β± 1.04%
C-SENSE 19.76% Β± 0.52%
SQUAD 13.28% Β± 0.93%

⚠️ Limitations Research use only. Trained on a small subset. Quality, robustness, and reasoning are much lower than SOTA models. SFT was only lightly applied; not intended for real world use.

πŸ§‘β€πŸ”¬ Citation & Concept

If you use this model or the underlying concepts in your research, please cite our work:

@misc{bochkov2025emergentsemanticstokenembeddings,
      title={Emergent Semantics Beyond Token Embeddings: Transformer LMs with Frozen Visual Unicode Representations}, 
      author={A. Bochkov},
      year={2025},
      eprint={2507.04886},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2507.04886}, 
}

@misc{bochkov2025growingtransformersmodularcomposition,
      title={Growing Transformers: Modular Composition and Layer-wise Expansion on a Frozen Substrate}, 
      author={A. Bochkov},
      year={2025},
      eprint={2507.07129},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2507.07129}, 
}

This work demonstrates that transformer blocks, not token embeddings, carry the semantic burden in LLMs β€” a step toward modular, fusable, multilingual LMs.

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained('Bochkov/pro_bvv_unfrozen')
model = AutoModelForCausalLM.from_pretrained('Bochkov/pro_bvv_unfrozen', trust_remote_code=True).to('cuda')
inputs = torch.tensor([tokenizer.encode("Example input: ")], device='cuda')
outputs = model.generate(inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0]))
Downloads last month
22
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Collection including Bochkov/pro_bvv_unfrozen