Pro models [pretrain]
Collection
Frozen-embedding LMs for English, Russian, Chinese; demonstration & comparison with standard LM.
β’
6 items
β’
Updated
Description
This is a baseline English language model (200M parameters) trained in the classical way with fully trainable token embeddings, provided for direct comparison with the conceptually frozen-embedding variant.
Training details
Evaluation
Task | pro_bvv_unfrozen |
---|---|
MMLU | 14.00% Β± 0.14% |
ARC-e | 24.09% Β± 0.78% |
ARC-c | 22.24% Β± 1.04% |
C-SENSE | 19.76% Β± 0.52% |
SQUAD | 13.28% Β± 0.93% |
β οΈ Limitations Research use only. Trained on a small subset. Quality, robustness, and reasoning are much lower than SOTA models. SFT was only lightly applied; not intended for real world use.
If you use this model or the underlying concepts in your research, please cite our work:
@misc{bochkov2025emergentsemanticstokenembeddings,
title={Emergent Semantics Beyond Token Embeddings: Transformer LMs with Frozen Visual Unicode Representations},
author={A. Bochkov},
year={2025},
eprint={2507.04886},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2507.04886},
}
@misc{bochkov2025growingtransformersmodularcomposition,
title={Growing Transformers: Modular Composition and Layer-wise Expansion on a Frozen Substrate},
author={A. Bochkov},
year={2025},
eprint={2507.07129},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2507.07129},
}
This work demonstrates that transformer blocks, not token embeddings, carry the semantic burden in LLMs β a step toward modular, fusable, multilingual LMs.
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained('Bochkov/pro_bvv_unfrozen')
model = AutoModelForCausalLM.from_pretrained('Bochkov/pro_bvv_unfrozen', trust_remote_code=True).to('cuda')
inputs = torch.tensor([tokenizer.encode("Example input: ")], device='cuda')
outputs = model.generate(inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0]))