Model Card for qwen_report
This model is a fine-tuned version of Qwen/Qwen2-VL-2B-Instruct. It has been trained using TRL.
Quick start
from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig
import torch
# Hugging Face model id
model_id = "BoghdadyJR/qwen_report"
# BitsAndBytesConfig int-4 config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = AutoModelForVision2Seq.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.float16,
quantization_config=bnb_config
)
processor = AutoProcessor.from_pretrained(model_id)
Training procedure
This model was trained with SFT.
Framework versions
- TRL: 0.15.1
- Transformers: 4.48.3
- Pytorch: 2.5.1+cu124
- Datasets: 3.3.1
- Tokenizers: 0.21.0
Citations
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.