|
--- |
|
base_model: facebook/mbart-large-cc25 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: en_es_nl+no_processing |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# en_es_nl+no_processing |
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5902 |
|
- Smatch Precision: 74.83 |
|
- Smatch Recall: 77.62 |
|
- Smatch Fscore: 76.2 |
|
- Smatch Unparsable: 0 |
|
- Percent Not Recoverable: 0.2904 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Smatch Precision | Smatch Recall | Smatch Fscore | Smatch Unparsable | Percent Not Recoverable | |
|
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:-------------:|:-----------------:|:-----------------------:| |
|
| 0.3941 | 1.0 | 3477 | 1.8519 | 18.33 | 65.69 | 28.66 | 0 | 0.0 | |
|
| 0.3983 | 2.0 | 6954 | 0.9133 | 29.25 | 72.49 | 41.68 | 0 | 0.1742 | |
|
| 0.2932 | 3.0 | 10431 | 0.7729 | 34.75 | 74.02 | 47.29 | 0 | 0.0 | |
|
| 0.2121 | 4.0 | 13908 | 0.7737 | 34.16 | 74.66 | 46.87 | 2 | 0.0 | |
|
| 0.0401 | 5.0 | 17385 | 0.7656 | 36.6 | 75.39 | 49.27 | 0 | 0.0 | |
|
| 0.1274 | 6.0 | 20862 | 0.7373 | 44.18 | 75.99 | 55.88 | 0 | 0.0 | |
|
| 0.0668 | 7.0 | 24339 | 0.6024 | 50.13 | 77.11 | 60.76 | 0 | 0.0 | |
|
| 0.0681 | 8.0 | 27816 | 0.6398 | 50.92 | 77.53 | 61.47 | 0 | 0.0 | |
|
| 0.0381 | 9.0 | 31293 | 0.5849 | 57.36 | 77.99 | 66.1 | 0 | 0.1161 | |
|
| 0.0586 | 10.0 | 34770 | 0.5628 | 59.08 | 77.76 | 67.15 | 0 | 0.0 | |
|
| 0.0074 | 11.0 | 38247 | 0.5632 | 60.25 | 79.02 | 68.37 | 0 | 0.1742 | |
|
| 0.0055 | 12.0 | 41724 | 0.5795 | 59.25 | 78.6 | 67.57 | 0 | 0.2904 | |
|
| 0.0014 | 13.0 | 45201 | 0.5725 | 64.79 | 78.78 | 71.11 | 0 | 0.1161 | |
|
| 0.0063 | 14.0 | 48678 | 0.5494 | 67.65 | 78.58 | 72.71 | 0 | 0.0 | |
|
| 0.012 | 15.0 | 52155 | 0.5821 | 66.07 | 78.66 | 71.82 | 0 | 0.0581 | |
|
| 0.0216 | 16.0 | 55632 | 0.5914 | 66.43 | 78.79 | 72.08 | 0 | 0.0581 | |
|
| 0.0155 | 17.0 | 59109 | 0.5684 | 70.69 | 78.61 | 74.44 | 0 | 0.1161 | |
|
| 0.0019 | 18.0 | 62586 | 0.5796 | 70.35 | 78.68 | 74.28 | 0 | 0.1161 | |
|
| 0.0224 | 19.0 | 66063 | 0.5885 | 69.56 | 78.73 | 73.86 | 0 | 0.1742 | |
|
| 0.0112 | 20.0 | 69540 | 0.5917 | 72.31 | 78.4 | 75.23 | 0 | 0.1161 | |
|
| 0.0014 | 21.0 | 73017 | 0.6102 | 72.56 | 78.24 | 75.3 | 0 | 0.2323 | |
|
| 0.0077 | 22.0 | 76494 | 0.5989 | 73.48 | 77.96 | 75.66 | 0 | 0.1742 | |
|
| 0.0072 | 23.0 | 79971 | 0.5907 | 74.32 | 78.04 | 76.13 | 0 | 0.0581 | |
|
| 0.0066 | 24.0 | 83448 | 0.5899 | 74.62 | 77.87 | 76.21 | 0 | 0.2323 | |
|
| 0.0048 | 25.0 | 86925 | 0.5902 | 74.83 | 77.62 | 76.2 | 0 | 0.2904 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.2 |
|
- Tokenizers 0.13.3 |
|
|