Astronomy GPT-2 Chatbot
This is a fine-tuned GPT-2 model for answering astronomy questions.
Model Details
- Base Model: GPT-2
- Training Data: 2,736 astronomy Q&A pairs
- Final Perplexity: 1.61
- Training Epochs: 10
- Domain: Astronomy, Space Science
Usage
from transformers import GPT2Tokenizer, GPT2LMHeadModel
# Load model
tokenizer = GPT2Tokenizer.from_pretrained("Branis333/astro-gpt2-chatbot")
model = GPT2LMHeadModel.from_pretrained("Branis333/astro-gpt2-chatbot")
# Generate answer
question = "What is a black hole?"
prompt = f"Q: {question}\nA:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(answer)
Training Details
- Batch Size: 2
- Learning Rate: 2e-5
- Max Sequence Length: 512
- Optimizer: AdamW
- GPU: Tesla T4
Performance
Epoch | Train Loss | Val Loss | Perplexity |
---|---|---|---|
1 | 0.5524 | 0.4702 | 1.60 |
5 | 0.3928 | 0.4498 | 1.57 |
10 | 0.2912 | 0.4740 | 1.61 |
Dataset
The model was trained on cleaned astronomy Q&A pairs covering:
- Terminology and definitions
- Multiple choice questions with explanations
- True/false questions
- Matching questions
Limitations
- Specialized for astronomy domain only
- May generate factually incorrect information
- Best used for educational purposes
- Should be fact-checked for accuracy
Citation
If you use this model, please cite:
@misc{astro-gpt2-chatbot,
author = {Your Name},
title = {Astronomy GPT-2 Chatbot},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/Branis333/astro-gpt2-chatbot}
}
- Downloads last month
- 101
Space using Branis333/astro-gpt2-chatbot 1
Evaluation results
- Perplexityself-reported1.610