enable the usage on huggingface-inference-toolkit

#9
Files changed (1) hide show
  1. handler.py +74 -0
handler.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import io
3
+ from typing import Dict, Any
4
+
5
+ import torch
6
+ from PIL import Image
7
+ from transformers import AutoProcessor, VisionEncoderDecoderModel
8
+
9
+
10
+ class EndpointHandler:
11
+ def __init__(self, path=""):
12
+ # Load processor and model from the provided path or model ID
13
+ self.processor = AutoProcessor.from_pretrained(path or "bytedance/Dolphin")
14
+ self.model = VisionEncoderDecoderModel.from_pretrained(path or "bytedance/Dolphin")
15
+
16
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
+ self.model.to(self.device)
18
+ self.model.eval()
19
+ self.model = self.model.half() # Half precision for speed
20
+
21
+ self.tokenizer = self.processor.tokenizer
22
+
23
+ def decode_base64_image(self, image_base64: str) -> Image.Image:
24
+ image_bytes = base64.b64decode(image_base64)
25
+ return Image.open(io.BytesIO(image_bytes)).convert("RGB")
26
+
27
+ def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
28
+ # Check for image input
29
+ if "inputs" not in data:
30
+ return {"error": "No inputs provided"}
31
+
32
+ image_input = data["inputs"]
33
+
34
+ # Support both base64 image strings and raw images (Hugging Face supports both)
35
+ if isinstance(image_input, str):
36
+ try:
37
+ image = self.decode_base64_image(image_input)
38
+ except Exception as e:
39
+ return {"error": f"Invalid base64 image: {str(e)}"}
40
+ else:
41
+ image = image_input # Assume PIL-compatible image
42
+
43
+ # Optional: Custom prompt (default: text reading)
44
+ prompt = data.get("prompt", "Read text in the image.")
45
+ full_prompt = f"<s>{prompt} <Answer/>"
46
+
47
+ # Preprocess inputs
48
+ inputs = self.processor(image, return_tensors="pt")
49
+ pixel_values = inputs.pixel_values.half().to(self.device)
50
+
51
+ prompt_ids = self.tokenizer(full_prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(self.device)
52
+ decoder_attention_mask = torch.ones_like(prompt_ids).to(self.device)
53
+
54
+ # Inference
55
+ outputs = self.model.generate(
56
+ pixel_values=pixel_values,
57
+ decoder_input_ids=prompt_ids,
58
+ decoder_attention_mask=decoder_attention_mask,
59
+ min_length=1,
60
+ max_length=4096,
61
+ pad_token_id=self.tokenizer.pad_token_id,
62
+ eos_token_id=self.tokenizer.eos_token_id,
63
+ use_cache=True,
64
+ bad_words_ids=[[self.tokenizer.unk_token_id]],
65
+ return_dict_in_generate=True,
66
+ do_sample=False,
67
+ num_beams=1,
68
+ )
69
+
70
+ sequence = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)[0]
71
+ # Clean up
72
+ generated_text = sequence.replace(full_prompt, "").replace("<pad>", "").replace("</s>", "").strip()
73
+
74
+ return {"text": generated_text}