ayymen's picture
End of training
9ff3bb2 verified
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - automatic-speech-recognition
  - CLEAR-Global/chichewa_34_102h
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-chichewa_34_102h
    results: []

w2v-bert-2.0-chichewa_34_102h

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the CLEAR-GLOBAL/CHICHEWA_34_102H - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2991
  • Wer: 0.3874
  • Cer: 0.1111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.2628 0.7877 1000 2.6113 0.9981 0.7664
0.1158 1.5750 2000 0.7048 0.6111 0.1786
0.0535 2.3623 3000 0.5161 0.5307 0.1527
0.0471 3.1497 4000 0.4501 0.4873 0.1434
0.0452 3.9374 5000 0.4284 0.4806 0.1410
0.0277 4.7247 6000 0.3880 0.4649 0.1387
0.0441 5.5120 7000 0.4015 0.4461 0.1294
0.0177 6.2993 8000 0.3798 0.4290 0.1209
0.0198 7.0866 9000 0.3330 0.4027 0.1171
0.0141 7.8744 10000 0.3333 0.4307 0.1213
0.0237 8.6617 11000 0.3653 0.4294 0.1259
0.014 9.4490 12000 0.3118 0.4048 0.1162
0.0079 10.2363 13000 0.2991 0.3874 0.1109
0.0106 11.0236 14000 0.3455 0.4008 0.1193
0.0089 11.8113 15000 0.3658 0.4091 0.1249
0.0068 12.5987 16000 0.3054 0.3918 0.1124
0.007 13.3860 17000 0.3255 0.3785 0.1114
0.0108 14.1733 18000 0.3393 0.4045 0.1152

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1