ayymen's picture
End of training
709efaf verified
|
raw
history blame
2.68 kB
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - automatic-speech-recognition
  - CLEAR-Global/chichewa_34_34h
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-chichewa_34_34h
    results: []

w2v-bert-2.0-chichewa_34_34h

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the CLEAR-GLOBAL/CHICHEWA_34_34H - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3084
  • Wer: 0.3910
  • Cer: 0.1127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.2884 1.8458 1000 1.3872 1.0113 0.3808
0.092 3.6907 2000 0.5229 0.5397 0.1527
0.0604 5.5355 3000 0.4211 0.4785 0.1347
0.2837 7.3804 4000 0.3645 0.4376 0.1248
0.0217 9.2253 5000 0.3404 0.4469 0.1232
0.0299 11.0702 6000 0.3288 0.4160 0.1173
0.0162 12.9160 7000 0.3320 0.3983 0.1139
0.0436 14.7608 8000 0.3125 0.3847 0.1099
0.0205 16.6057 9000 0.3084 0.3910 0.1126
0.0198 18.4506 10000 0.4008 0.4002 0.1135
0.0516 20.2955 11000 0.3086 0.3701 0.1075
0.0057 22.1404 12000 0.3458 0.3847 0.1114
0.0041 23.9861 13000 0.3829 0.3899 0.1137
0.0142 25.8310 14000 0.4180 0.4121 0.1168

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1