w2v-bert-2.0-luo_19_19h
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the CLEAR-GLOBAL/LUO_19_19H - NA dataset. It achieves the following results on the evaluation set:
- Loss: 0.2606
- Wer: 0.2928
- Cer: 0.0957
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 100000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.4378 | 2.4277 | 1000 | 0.7760 | 0.5952 | 0.1907 |
0.5611 | 4.8554 | 2000 | 0.4460 | 0.4255 | 0.1422 |
0.099 | 7.2819 | 3000 | 0.3206 | 0.3329 | 0.1064 |
0.0731 | 9.7096 | 4000 | 0.2828 | 0.3197 | 0.1003 |
0.1424 | 12.1361 | 5000 | 0.2606 | 0.2941 | 0.0958 |
0.0376 | 14.5638 | 6000 | 0.2693 | 0.2787 | 0.0897 |
0.0545 | 16.9915 | 7000 | 0.2793 | 0.2879 | 0.0897 |
0.0309 | 19.4180 | 8000 | 0.3190 | 0.2840 | 0.0921 |
0.0262 | 21.8457 | 9000 | 0.2881 | 0.2897 | 0.0924 |
0.0288 | 24.2722 | 10000 | 0.3093 | 0.3003 | 0.0955 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for CLEAR-Global/w2v-bert-2.0-luo_19_19h
Base model
facebook/w2v-bert-2.0