w2v-bert-2.0-luo_19_19h

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the CLEAR-GLOBAL/LUO_19_19H - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2606
  • Wer: 0.2928
  • Cer: 0.0957

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.4378 2.4277 1000 0.7760 0.5952 0.1907
0.5611 4.8554 2000 0.4460 0.4255 0.1422
0.099 7.2819 3000 0.3206 0.3329 0.1064
0.0731 9.7096 4000 0.2828 0.3197 0.1003
0.1424 12.1361 5000 0.2606 0.2941 0.0958
0.0376 14.5638 6000 0.2693 0.2787 0.0897
0.0545 16.9915 7000 0.2793 0.2879 0.0897
0.0309 19.4180 8000 0.3190 0.2840 0.0921
0.0262 21.8457 9000 0.2881 0.2897 0.0924
0.0288 24.2722 10000 0.3093 0.3003 0.0955

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
2
Safetensors
Model size
606M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for CLEAR-Global/w2v-bert-2.0-luo_19_19h

Finetuned
(281)
this model