w2v-bert-2.0-luo_19_38h
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the CLEAR-GLOBAL/LUO_19_38H - NA dataset. It achieves the following results on the evaluation set:
- Loss: 0.2546
- Wer: 0.3108
- Cer: 0.0981
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 100000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.3406 | 1.4948 | 1000 | 0.8302 | 0.6124 | 0.1932 |
0.1199 | 2.9895 | 2000 | 0.5006 | 0.4101 | 0.1477 |
0.1048 | 4.4843 | 3000 | 0.3736 | 0.3655 | 0.1173 |
0.0645 | 5.9791 | 4000 | 0.3103 | 0.3541 | 0.1165 |
0.0521 | 7.4738 | 5000 | 0.2974 | 0.3157 | 0.0985 |
0.1057 | 8.9686 | 6000 | 0.2747 | 0.3197 | 0.1059 |
0.0489 | 10.4634 | 7000 | 0.2846 | 0.2937 | 0.0961 |
0.03 | 11.9581 | 8000 | 0.3065 | 0.3117 | 0.1018 |
0.2008 | 13.4529 | 9000 | 0.2546 | 0.3117 | 0.0977 |
0.0562 | 14.9477 | 10000 | 0.3030 | 0.2809 | 0.0926 |
0.026 | 16.4425 | 11000 | 0.2626 | 0.2923 | 0.0901 |
0.0314 | 17.9372 | 12000 | 0.2877 | 0.2994 | 0.0908 |
0.0211 | 19.4320 | 13000 | 0.3100 | 0.2875 | 0.0918 |
0.0175 | 20.9268 | 14000 | 0.3116 | 0.2888 | 0.0932 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for CLEAR-Global/w2v-bert-2.0-luo_19_38h
Base model
facebook/w2v-bert-2.0