|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: re-irr-sv-agr-lstm-0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# re-irr-sv-agr-lstm-0 |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.9871 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 0 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 3052726 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-------:|:---------------:| |
|
| 4.774 | 0.03 | 76320 | 4.7628 | |
|
| 4.4898 | 1.03 | 152640 | 4.4830 | |
|
| 4.3488 | 0.03 | 228960 | 4.3492 | |
|
| 4.2646 | 1.03 | 305280 | 4.2676 | |
|
| 4.1995 | 0.03 | 381600 | 4.2116 | |
|
| 4.1574 | 1.03 | 457920 | 4.1707 | |
|
| 4.1193 | 0.03 | 534240 | 4.1409 | |
|
| 4.0851 | 0.03 | 610560 | 4.1171 | |
|
| 4.0581 | 1.03 | 686880 | 4.0982 | |
|
| 4.0332 | 0.03 | 763200 | 4.0820 | |
|
| 4.0122 | 1.03 | 839520 | 4.0701 | |
|
| 4.0007 | 0.03 | 915840 | 4.0597 | |
|
| 3.986 | 1.03 | 992160 | 4.0507 | |
|
| 3.9678 | 0.03 | 1068480 | 4.0432 | |
|
| 3.9529 | 1.03 | 1144800 | 4.0362 | |
|
| 3.9348 | 0.03 | 1221120 | 4.0301 | |
|
| 3.922 | 0.03 | 1297440 | 4.0256 | |
|
| 3.9113 | 1.03 | 1373760 | 4.0213 | |
|
| 3.9021 | 0.03 | 1450080 | 4.0174 | |
|
| 3.8989 | 1.03 | 1526400 | 4.0139 | |
|
| 3.8936 | 0.03 | 1602720 | 4.0110 | |
|
| 3.8923 | 1.03 | 1679040 | 4.0083 | |
|
| 3.8889 | 0.03 | 1755360 | 4.0060 | |
|
| 3.8785 | 1.03 | 1831680 | 4.0036 | |
|
| 3.8726 | 0.03 | 1908000 | 4.0011 | |
|
| 3.8671 | 0.03 | 1984320 | 3.9992 | |
|
| 3.8603 | 1.03 | 2060640 | 3.9976 | |
|
| 3.8618 | 0.03 | 2136960 | 3.9963 | |
|
| 3.8576 | 1.03 | 2213280 | 3.9950 | |
|
| 3.8495 | 0.03 | 2289600 | 3.9942 | |
|
| 3.846 | 1.03 | 2365920 | 3.9930 | |
|
| 3.8371 | 2.03 | 2442240 | 3.9918 | |
|
| 3.8292 | 0.03 | 2518560 | 3.9914 | |
|
| 3.8253 | 1.03 | 2594880 | 3.9905 | |
|
| 3.8211 | 0.03 | 2671200 | 3.9897 | |
|
| 3.823 | 1.03 | 2747520 | 3.9888 | |
|
| 3.8256 | 0.03 | 2823840 | 3.9882 | |
|
| 3.8285 | 1.03 | 2900160 | 3.9876 | |
|
| 3.8292 | 0.03 | 2976480 | 3.9874 | |
|
| 3.8239 | 1.02 | 3052726 | 3.9871 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|