bert_base_for_whole_train_result_Spam-Ham_farshad_half_4_2

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0513
  • Accuracy: 0.9927
  • F1: 0.9930

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 4096
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6012 5.8501 50 0.4132 0.9008 0.8986
0.2316 11.7002 100 0.0831 0.9771 0.9776
0.0448 17.5503 150 0.0384 0.9878 0.9882
0.0158 23.4004 200 0.0408 0.9884 0.9887
0.0083 29.2505 250 0.0427 0.9896 0.9899
0.0055 35.1005 300 0.0745 0.9852 0.9856
0.0048 40.9506 350 0.0522 0.9875 0.9879
0.0044 46.8007 400 0.0481 0.9890 0.9893
0.0017 52.6508 450 0.0443 0.9916 0.9918
0.0014 58.5009 500 0.0494 0.9922 0.9924
0.0015 64.3510 550 0.0565 0.9896 0.9899
0.0024 70.2011 600 0.0676 0.9872 0.9876
0.0011 76.0512 650 0.0643 0.9896 0.9899
0.0009 81.9013 700 0.0615 0.9910 0.9913
0.0056 87.7514 750 0.0426 0.9927 0.9930
0.0008 93.6015 800 0.0513 0.9927 0.9930

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for CatBarks/bert_base_for_whole_train_result_Spam-Ham_farshad_half_4_2

Finetuned
(5847)
this model