Thai Food Ingredients → Dish Prediction
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: th
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("thai_food_prediction1")
# Run inference
sentences = [
'ปลาทูน่า, พริกขี้หนู, ไข่ไก่, น้ำปลา, เล็กน้อย, น้ำมันพืช',
'ไข่เจียวทูน่าพริกสับ',
'ข้าวแต๋น',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
thai-food-eval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6053 |
cosine_accuracy@3 | 0.8421 |
cosine_accuracy@5 | 0.9342 |
cosine_accuracy@10 | 0.9737 |
cosine_precision@1 | 0.6053 |
cosine_precision@3 | 0.2807 |
cosine_precision@5 | 0.1868 |
cosine_recall@1 | 0.6053 |
cosine_recall@3 | 0.8421 |
cosine_recall@5 | 0.9342 |
cosine_ndcg@10 | 0.789 |
cosine_mrr@10 | 0.7292 |
cosine_map@100 | 0.7302 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,452 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 29.15 tokens
- max: 125 tokens
- min: 4 tokens
- mean: 9.91 tokens
- max: 22 tokens
- Samples:
anchor positive ปลาหมึก, ซีอิ๊วดำ, ผงขมิ้น, น้ำปูนใส, กระเทียมสับ, รากผักชี, พริกแดง, น้ำตาลปี๊บ, เกลือ, น้ำปลา, น้ำมะนาว
ปลาหมึกย่าง
ไปตกหมึกมา อยากทำอะไรกินง่ายๆ ได้รสชาติของปลาหมึกแท้ๆ
ปลาหมึกย่าง
อยากกินปลาหมึกๆ ซีฟุ้ด อร่อยๆ
ปลาหมึกย่าง
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 76 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 76 samples:
anchor positive type string string details - min: 4 tokens
- mean: 47.42 tokens
- max: 86 tokens
- min: 4 tokens
- mean: 10.24 tokens
- max: 20 tokens
- Samples:
anchor positive น้ำมันพืช, กระเทียม, น้ำตาลทราย, น้ำปลา, ซีอิ๊วขาว, ซอสปรุงรส, ซีอิ๊วดำเค็ม, น้ำส้มสายชู, พริกไทย, เส้นหมี่แห้ง, ลูกชิ้น, ถั่วงอก
หมี่คลุก
น้ำมัน, กระเทียม, หมูหมัก, เส้นใหญ่, ซีอิ้วดำ, คะน้า, กระหล่ำปลี, แครอท, ไข่เป็ด, ไข่ไก่, ผงปรุงรส, น้ำตาลทราย, ซอสหอยนางรม, ซอสปรุงรส, พริกไทย
ผัดซีอิ้วเส้นใหญ่
สะโพกหมู, น้ำตาลทราย, น้ำตาลปี๊บ, ซีอิ๊วขาว, เกลือ, น้ำเปล่า, ลูกผักชี, ยี่หร่า, กระเทียมไทย, สับละเอียด, น้ำมันพืช
หมูสวรรค์
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 24per_device_eval_batch_size
: 24learning_rate
: 5e-06num_train_epochs
: 6warmup_ratio
: 0.1load_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 24per_device_eval_batch_size
: 24per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | thai-food-eval_cosine_ndcg@10 |
---|---|---|---|---|
0.0971 | 10 | 3.2532 | - | - |
0.1942 | 20 | 2.6975 | - | - |
0.2913 | 30 | 2.3365 | - | - |
0.3883 | 40 | 1.9787 | - | - |
0.4854 | 50 | 1.9125 | - | - |
0.5825 | 60 | 1.7024 | - | - |
0.6796 | 70 | 1.6074 | - | - |
0.7767 | 80 | 1.3358 | - | - |
0.8738 | 90 | 1.4281 | - | - |
0.9709 | 100 | 1.4312 | - | - |
1.0 | 103 | - | 0.9767 | 0.6681 |
1.0680 | 110 | 1.1873 | - | - |
1.1650 | 120 | 1.1148 | - | - |
1.2621 | 130 | 1.1163 | - | - |
1.3592 | 140 | 1.0429 | - | - |
1.4563 | 150 | 0.9594 | - | - |
1.5534 | 160 | 0.9593 | - | - |
1.6505 | 170 | 1.0314 | - | - |
1.7476 | 180 | 1.0236 | - | - |
1.8447 | 190 | 1.0052 | - | - |
1.9417 | 200 | 1.0062 | - | - |
2.0 | 206 | - | 0.6975 | 0.7435 |
2.0388 | 210 | 0.8259 | - | - |
2.1359 | 220 | 0.6713 | - | - |
2.2330 | 230 | 0.7833 | - | - |
2.3301 | 240 | 0.8613 | - | - |
2.4272 | 250 | 0.6706 | - | - |
2.5243 | 260 | 0.8971 | - | - |
2.6214 | 270 | 0.7678 | - | - |
2.7184 | 280 | 0.741 | - | - |
2.8155 | 290 | 0.6872 | - | - |
2.9126 | 300 | 0.7854 | - | - |
3.0 | 309 | - | 0.6185 | 0.7481 |
3.0097 | 310 | 0.7095 | - | - |
3.1068 | 320 | 0.6708 | - | - |
3.2039 | 330 | 0.6311 | - | - |
3.3010 | 340 | 0.6769 | - | - |
3.3981 | 350 | 0.5816 | - | - |
3.4951 | 360 | 0.6604 | - | - |
3.5922 | 370 | 0.6356 | - | - |
3.6893 | 380 | 0.5459 | - | - |
3.7864 | 390 | 0.5856 | - | - |
3.8835 | 400 | 0.6812 | - | - |
3.9806 | 410 | 0.5893 | - | - |
4.0 | 412 | - | 0.5796 | 0.7742 |
4.0777 | 420 | 0.4721 | - | - |
4.1748 | 430 | 0.4353 | - | - |
4.2718 | 440 | 0.5372 | - | - |
4.3689 | 450 | 0.6343 | - | - |
4.4660 | 460 | 0.6572 | - | - |
4.5631 | 470 | 0.601 | - | - |
4.6602 | 480 | 0.5418 | - | - |
4.7573 | 490 | 0.5312 | - | - |
4.8544 | 500 | 0.5055 | - | - |
4.9515 | 510 | 0.5447 | - | - |
5.0 | 515 | - | 0.5373 | 0.7877 |
5.0485 | 520 | 0.5501 | - | - |
5.1456 | 530 | 0.5831 | - | - |
5.2427 | 540 | 0.5378 | - | - |
5.3398 | 550 | 0.4975 | - | - |
5.4369 | 560 | 0.5326 | - | - |
5.5340 | 570 | 0.3991 | - | - |
5.6311 | 580 | 0.473 | - | - |
5.7282 | 590 | 0.4915 | - | - |
5.8252 | 600 | 0.4234 | - | - |
5.9223 | 610 | 0.5445 | - | - |
6.0 | 618 | - | 0.5209 | 0.789 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 2.14.4
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Chanisorn/thai-food-mpnet-new-v10
Evaluation results
- Cosine Accuracy@1 on thai food evalself-reported0.605
- Cosine Accuracy@3 on thai food evalself-reported0.842
- Cosine Accuracy@5 on thai food evalself-reported0.934
- Cosine Accuracy@10 on thai food evalself-reported0.974
- Cosine Precision@1 on thai food evalself-reported0.605
- Cosine Precision@3 on thai food evalself-reported0.281
- Cosine Precision@5 on thai food evalself-reported0.187
- Cosine Recall@1 on thai food evalself-reported0.605
- Cosine Recall@3 on thai food evalself-reported0.842
- Cosine Recall@5 on thai food evalself-reported0.934