CrossEncoder based on cross-encoder/ms-marco-MiniLM-L12-v2
This is a Cross Encoder model finetuned from cross-encoder/ms-marco-MiniLM-L12-v2 on the climate-cross-encoder-mixed-neg-v3 dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: cross-encoder/ms-marco-MiniLM-L12-v2
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("CharlesPing/finetuned-ce-climate-multineg-v1")
# Get scores for pairs of texts
pairs = [
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'Greenhouse gases, in particular carbon dioxide and methane, played a significant role during the Eocene in controlling the surface temperature.'],
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'Climatic geomorphology is of limited use to study recent (Quaternary, Holocene) large climate changes since there are seldom discernible in the geomorphological record.'],
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'There is also a close correlation between CO2 and temperature, where CO2 has a strong control over global temperatures in Earth history.'],
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'While scientists knew of past climate change such as the ice ages, the concept of climate as unchanging was useful in the development of a general theory of what determines climate.'],
['Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.', 'Some long term modifications along the history of the planet have been significant, such as the incorporation of oxygen to the atmosphere.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'Scientific analysis of past climates\xa0shows that greenhouse gasses, principally CO2,\xa0have controlled most ancient\xa0climate changes.',
[
'Greenhouse gases, in particular carbon dioxide and methane, played a significant role during the Eocene in controlling the surface temperature.',
'Climatic geomorphology is of limited use to study recent (Quaternary, Holocene) large climate changes since there are seldom discernible in the geomorphological record.',
'There is also a close correlation between CO2 and temperature, where CO2 has a strong control over global temperatures in Earth history.',
'While scientists knew of past climate change such as the ice ages, the concept of climate as unchanging was useful in the development of a general theory of what determines climate.',
'Some long term modifications along the history of the planet have been significant, such as the incorporation of oxygen to the atmosphere.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Dataset:
climate-rerank-multineg
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 1, "always_rerank_positives": false }
Metric | Value |
---|---|
map | 0.6809 (-0.3191) |
mrr@1 | 0.6748 (-0.3252) |
ndcg@1 | 0.6748 (-0.3252) |
Training Details
Training Dataset
climate-cross-encoder-mixed-neg-v3
- Dataset: climate-cross-encoder-mixed-neg-v3 at cd49b57
- Size: 41,052 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 49 characters
- mean: 140.03 characters
- max: 306 characters
- min: 4 characters
- mean: 136.03 characters
- max: 731 characters
- min: 0.0
- mean: 0.09
- max: 1.0
- Samples:
query doc label “A leading Canadian authority on polar bears, Mitch Taylor, said: ‘We’re seeing an increase in bears that’s really unprecedented, and in places where we’re seeing a decrease in the population
Warnings about the future of the polar bear are often contrasted with the fact that worldwide population estimates have increased over the past 50 years and are relatively stable today.
1.0
“A leading Canadian authority on polar bears, Mitch Taylor, said: ‘We’re seeing an increase in bears that’s really unprecedented, and in places where we’re seeing a decrease in the population
Species distribution models of recent years indicate that the deer tick, known as "I. scapularis," is pushing its distribution to higher latitudes of the Northeastern United States and Canada, as well as pushing and maintaining populations in the South Central and Northern Midwest regions of the United States.
0.0
“A leading Canadian authority on polar bears, Mitch Taylor, said: ‘We’re seeing an increase in bears that’s really unprecedented, and in places where we’re seeing a decrease in the population
Bear and deer are among the animals present.
0.0
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
Evaluation Dataset
climate-cross-encoder-mixed-neg-v3
- Dataset: climate-cross-encoder-mixed-neg-v3 at cd49b57
- Size: 4,290 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 39 characters
- mean: 116.67 characters
- max: 240 characters
- min: 18 characters
- mean: 132.92 characters
- max: 731 characters
- min: 0.0
- mean: 0.09
- max: 1.0
- Samples:
query doc label Scientific analysis of past climates shows that greenhouse gasses, principally CO2, have controlled most ancient climate changes.
Greenhouse gases, in particular carbon dioxide and methane, played a significant role during the Eocene in controlling the surface temperature.
1.0
Scientific analysis of past climates shows that greenhouse gasses, principally CO2, have controlled most ancient climate changes.
Climatic geomorphology is of limited use to study recent (Quaternary, Holocene) large climate changes since there are seldom discernible in the geomorphological record.
0.0
Scientific analysis of past climates shows that greenhouse gasses, principally CO2, have controlled most ancient climate changes.
There is also a close correlation between CO2 and temperature, where CO2 has a strong control over global temperatures in Earth history.
0.0
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 32learning_rate
: 2e-05warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | climate-rerank-multineg_ndcg@1 |
---|---|---|---|---|
0.0390 | 100 | 0.5097 | - | - |
0.0779 | 200 | 0.3662 | - | - |
0.1169 | 300 | 0.3034 | - | - |
0.1559 | 400 | 0.2655 | - | - |
0.1949 | 500 | 0.2651 | 0.2262 | 0.6585 (-0.3415) |
0.2338 | 600 | 0.2161 | - | - |
0.2728 | 700 | 0.227 | - | - |
0.3118 | 800 | 0.235 | - | - |
0.3507 | 900 | 0.2243 | - | - |
0.3897 | 1000 | 0.2081 | 0.2174 | 0.6992 (-0.3008) |
0.4287 | 1100 | 0.1961 | - | - |
0.4677 | 1200 | 0.207 | - | - |
0.5066 | 1300 | 0.2375 | - | - |
0.5456 | 1400 | 0.2117 | - | - |
0.5846 | 1500 | 0.2058 | 0.2253 | 0.6748 (-0.3252) |
0.6235 | 1600 | 0.2163 | - | - |
0.6625 | 1700 | 0.2235 | - | - |
0.7015 | 1800 | 0.2193 | - | - |
0.7405 | 1900 | 0.1924 | - | - |
0.7794 | 2000 | 0.2084 | 0.2095 | 0.6748 (-0.3252) |
0.8184 | 2100 | 0.2113 | - | - |
0.8574 | 2200 | 0.2276 | - | - |
0.8963 | 2300 | 0.2071 | - | - |
0.9353 | 2400 | 0.2374 | - | - |
0.9743 | 2500 | 0.2173 | 0.2172 | 0.6667 (-0.3333) |
1.0133 | 2600 | 0.2011 | - | - |
1.0522 | 2700 | 0.1634 | - | - |
1.0912 | 2800 | 0.1807 | - | - |
1.1302 | 2900 | 0.1878 | - | - |
1.1691 | 3000 | 0.2037 | 0.2147 | 0.6911 (-0.3089) |
1.2081 | 3100 | 0.1904 | - | - |
1.2471 | 3200 | 0.1911 | - | - |
1.2860 | 3300 | 0.1828 | - | - |
1.3250 | 3400 | 0.1686 | - | - |
1.3640 | 3500 | 0.1892 | 0.2179 | 0.6992 (-0.3008) |
1.4030 | 3600 | 0.188 | - | - |
1.4419 | 3700 | 0.1691 | - | - |
1.4809 | 3800 | 0.1946 | - | - |
1.5199 | 3900 | 0.1938 | - | - |
1.5588 | 4000 | 0.211 | 0.2088 | 0.6992 (-0.3008) |
1.5978 | 4100 | 0.1826 | - | - |
1.6368 | 4200 | 0.1608 | - | - |
1.6758 | 4300 | 0.1782 | - | - |
1.7147 | 4400 | 0.1803 | - | - |
1.7537 | 4500 | 0.1804 | 0.2160 | 0.6911 (-0.3089) |
1.7927 | 4600 | 0.1823 | - | - |
1.8316 | 4700 | 0.1844 | - | - |
1.8706 | 4800 | 0.1727 | - | - |
1.9096 | 4900 | 0.1937 | - | - |
1.9486 | 5000 | 0.1662 | 0.2219 | 0.6829 (-0.3171) |
1.9875 | 5100 | 0.1653 | - | - |
2.0265 | 5200 | 0.1658 | - | - |
2.0655 | 5300 | 0.1316 | - | - |
2.1044 | 5400 | 0.1379 | - | - |
2.1434 | 5500 | 0.152 | 0.2513 | 0.6504 (-0.3496) |
2.1824 | 5600 | 0.1848 | - | - |
2.2214 | 5700 | 0.1507 | - | - |
2.2603 | 5800 | 0.1495 | - | - |
2.2993 | 5900 | 0.1469 | - | - |
2.3383 | 6000 | 0.1596 | 0.2407 | 0.6585 (-0.3415) |
2.3772 | 6100 | 0.1518 | - | - |
2.4162 | 6200 | 0.1351 | - | - |
2.4552 | 6300 | 0.1706 | - | - |
2.4942 | 6400 | 0.1538 | - | - |
2.5331 | 6500 | 0.1329 | 0.2505 | 0.6911 (-0.3089) |
2.5721 | 6600 | 0.147 | - | - |
2.6111 | 6700 | 0.1289 | - | - |
2.6500 | 6800 | 0.1698 | - | - |
2.6890 | 6900 | 0.1456 | - | - |
2.7280 | 7000 | 0.141 | 0.2618 | 0.6748 (-0.3252) |
2.7670 | 7100 | 0.1413 | - | - |
2.8059 | 7200 | 0.1474 | - | - |
2.8449 | 7300 | 0.1381 | - | - |
2.8839 | 7400 | 0.1252 | - | - |
2.9228 | 7500 | 0.1384 | 0.2608 | 0.6748 (-0.3252) |
2.9618 | 7600 | 0.1826 | - | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 32
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for CharlesPing/finetuned-ce-climate-multineg-v1
Base model
microsoft/MiniLM-L12-H384-uncased
Quantized
cross-encoder/ms-marco-MiniLM-L12-v2
Dataset used to train CharlesPing/finetuned-ce-climate-multineg-v1
Evaluation results
- Map on climate rerank multinegself-reported0.681
- Mrr@1 on climate rerank multinegself-reported0.675
- Ndcg@1 on climate rerank multinegself-reported0.675