ChengYinUTokyo's picture
End of training
a60eed5 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: LC_Classification_mymodel
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8126984126984127

LC_Classification_mymodel

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4954
  • Accuracy: 0.8127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5039 1.0 20 1.4275 0.2540
1.1888 2.0 40 1.1616 0.4730
1.0682 3.0 60 1.0345 0.5302
0.8865 4.0 80 0.9234 0.5683
0.7938 5.0 100 0.8973 0.5492
0.7519 6.0 120 0.8358 0.6127
0.6776 7.0 140 0.8197 0.6222
0.5899 8.0 160 0.7399 0.6635
0.5905 9.0 180 0.7407 0.6381
0.5343 10.0 200 0.7049 0.7143
0.4882 11.0 220 0.6190 0.7333
0.4188 12.0 240 0.6137 0.7524
0.4429 13.0 260 0.5947 0.7556
0.4362 14.0 280 0.6187 0.7175
0.3318 15.0 300 0.5669 0.7683
0.3945 16.0 320 0.5443 0.7937
0.3985 17.0 340 0.5436 0.8095
0.2732 18.0 360 0.5000 0.8222
0.3049 19.0 380 0.5211 0.8
0.2911 20.0 400 0.5371 0.7714
0.2853 21.0 420 0.4954 0.8127

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.6.0
  • Tokenizers 0.21.1