wav2vecvanilla

This model is a fine-tuned version of facebook/wav2vec2-base-960h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8028
  • Wer: 0.3041

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1729 1.69 100 1.0048 0.3681
1.0722 3.39 200 0.9117 0.3511
0.9994 5.08 300 0.9302 0.3436
0.9576 6.78 400 0.8246 0.3320
0.9826 8.47 500 0.7846 0.3343
0.801 10.17 600 0.8600 0.3269
0.8174 11.86 700 0.7871 0.3186
0.7162 13.56 800 0.8164 0.3186
0.7447 15.25 900 0.8965 0.3084
0.6889 16.95 1000 0.8239 0.3057
0.6739 18.64 1100 0.8028 0.3041

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
161
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Chijioke-Mgbahurike/wav2vecvanilla

Finetuned
(123)
this model