CrossEncoder based on deepvk/USER-bge-m3
This is a Cross Encoder model finetuned from deepvk/USER-bge-m3 using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text pair classification.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: deepvk/USER-bge-m3
- Maximum Sequence Length: 8192 tokens
- Number of Output Labels: 2 labels
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("Chimalpopoka/CrossEncoderRanker")
# Get scores for pairs of texts
pairs = [
['Панель №6 IgE (Сазан, карп, щука, судак, кефаль, ледяная рыба, пикша, осетр)', 'Сазан, (Cyprinus carpio), IgE, аллерген - e82. Метод: ИФА'],
['Определение антител класса M (IgM) к цитомегаловирусу (CytomegАlovirus) в крови', 'Бактериологическое исследование гнойного отделяемого: На аэробные и факультативно-анаэробные микроорганизмы. Метод: культуральный'],
['Исследования уровня бетта-изомеризованного C-концевого телопептида коллагена 1 типа (Beta-Cross laps) в крови', 'Глюкоза, в венозной крови'],
['Посев кала на диарогенные эшерихиозы (E. coli), закл., Кал', 'Коклюш (Bordetella pertussis): Антитела: IgG, (количественно). Метод: ИФА'],
['Ультразвуковое исследование поджелудочной железы (детям)', 'УЗИ поджелудочной железы, для детей'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5, 2)
Evaluation
Metrics
Cross Encoder Softmax Accuracy
- Dataset:
softmax_accuracy_eval
- Evaluated with
CESoftmaxAccuracyEvaluator
Metric | Value |
---|---|
f1_macro | 0.9772 |
f1_micro | 0.9772 |
f1_weighted | 0.9772 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 82,796 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 4 characters
- mean: 66.18 characters
- max: 504 characters
- min: 3 characters
- mean: 62.27 characters
- max: 385 characters
- 0: ~50.60%
- 1: ~49.40%
- Samples:
sentence_0 sentence_1 label Панель №6 IgE (Сазан, карп, щука, судак, кефаль, ледяная рыба, пикша, осетр)
Сазан, (Cyprinus carpio), IgE, аллерген - e82. Метод: ИФА
1
Определение антител класса M (IgM) к цитомегаловирусу (CytomegАlovirus) в крови
Бактериологическое исследование гнойного отделяемого: На аэробные и факультативно-анаэробные микроорганизмы. Метод: культуральный
0
Исследования уровня бетта-изомеризованного C-концевого телопептида коллагена 1 типа (Beta-Cross laps) в крови
Глюкоза, в венозной крови
0
- Loss:
CrossEntropyLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsnum_train_epochs
: 1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | softmax_accuracy_eval_f1_macro |
---|---|---|---|
0.0483 | 500 | 0.5573 | - |
0.0966 | 1000 | 0.2189 | - |
0.1449 | 1500 | 0.2144 | - |
0.1932 | 2000 | 0.1876 | 0.9683 |
0.2415 | 2500 | 0.1812 | - |
0.2899 | 3000 | 0.1657 | - |
0.3382 | 3500 | 0.1796 | - |
0.3865 | 4000 | 0.1592 | 0.9702 |
0.4348 | 4500 | 0.156 | - |
0.4831 | 5000 | 0.1491 | - |
0.5314 | 5500 | 0.1555 | - |
0.5797 | 6000 | 0.1216 | 0.9683 |
0.6280 | 6500 | 0.1276 | - |
0.6763 | 7000 | 0.1305 | - |
0.7246 | 7500 | 0.1156 | - |
0.7729 | 8000 | 0.1197 | 0.9759 |
0.8213 | 8500 | 0.1215 | - |
0.8696 | 9000 | 0.1065 | - |
0.9179 | 9500 | 0.0896 | - |
0.9662 | 10000 | 0.1135 | 0.9772 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.53.2
- PyTorch: 2.7.1+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 148
Model tree for Chimalpopoka/CrossEncoderRanker
Base model
deepvk/USER-bge-m3Evaluation results
- F1 Macro on softmax accuracy evalself-reported0.977
- F1 Micro on softmax accuracy evalself-reported0.977
- F1 Weighted on softmax accuracy evalself-reported0.977