Meeting Summarizer

This model is a fine-tuned version of google/flan-t5-small for meeting summarization tasks.

Model Details

  • Base Model: google/flan-t5-small
  • Task: Abstractive Meeting Summarization
  • Training Data: QMSum Dataset + Enhanced Training
  • Parameters: ~60.5M parameters
  • Max Input Length: 256 tokens
  • Max Output Length: 64 tokens

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("CodeXRyu/meeting-summarizer-v2")
model = AutoModelForSeq2SeqLM.from_pretrained("CodeXRyu/meeting-summarizer-v2")

# Example usage
meeting_text = "Your meeting transcript here..."
inputs = tokenizer.encode(meeting_text, return_tensors="pt", max_length=256, truncation=True)
outputs = model.generate(inputs, max_length=64, num_beams=4, early_stopping=True)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(summary)

Training Configuration

  • Max Input Length: 256 tokens
  • Max Output Length: 64 tokens
  • Training: Fine-tuned on meeting summarization data

This model was trained for meeting summarization tasks.

Downloads last month
11
Safetensors
Model size
0.6B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for CodeXRyu/meeting-summarizer-v2

Finetuned
(437)
this model