whisper-large-v2 / README.md
Coletomyo's picture
optional-commit-message
3679e1d verified
metadata
language:
  - mn
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
base_model: openai/whisper-large-v2
model-index:
  - name: Whisper Large Mongolian
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 16.0
          type: mozilla-foundation/common_voice_16_0
          config: mn
          split: None
          args: 'config: mn, split: test'
        metrics:
          - type: wer
            value: 37.23357981731187
            name: Wer

Whisper Large Mongolian

This model is a fine-tuned version of openai/whisper-large-v2 on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4028
  • Wer: 37.2336

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3446 0.99 1000 0.4391 51.4572
0.1481 1.98 2000 0.3765 42.2412
0.076 2.97 3000 0.3830 39.0822
0.0149 3.96 4000 0.4028 37.2336

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2