Add pipeline tag, library name, paper link and Github link
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,122 +1,142 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
import
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
from
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
import
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
pipeline_tag: video-text-to-text
|
| 4 |
+
library_name: transformers
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
# M4-Audio-LongVA-7B-Qwen2
|
| 8 |
+
|
| 9 |
+
Enhancing Omni Interactive Capabilities in MLLM
|
| 10 |
+
|
| 11 |
+
This repository contains the model described in [OmniMMI: A Comprehensive Multi-modal Interaction Benchmark in Streaming Video Contexts](https://huggingface.co/papers/2503.22952).
|
| 12 |
+
The code can be found at https://github.com/patrick-tssn/M4.
|
| 13 |
+
|
| 14 |
+

|
| 15 |
+
|
| 16 |
+
M4-Audio-7B is an extension of [LongVA-7B](https://github.com/EvolvingLMMs-Lab/LongVA), further trained using the [M4-IT](https://huggingface.co/datasets/ColorfulAI/M4-IT) dataset, which comprises 9,963 visual-audio instruction tuning instances. This training was conducted without any special modifications to the existing training pipeline.
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
## Usage
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
*Please refer to [M4](https://github.com/patrick-tssn/M4) to install relvevant packages*
|
| 23 |
+
|
| 24 |
+
```python
|
| 25 |
+
import os
|
| 26 |
+
from PIL import Image
|
| 27 |
+
import numpy as np
|
| 28 |
+
import torchaudio
|
| 29 |
+
import torch
|
| 30 |
+
from decord import VideoReader, cpu
|
| 31 |
+
import whisper
|
| 32 |
+
# fix seed
|
| 33 |
+
torch.manual_seed(0)
|
| 34 |
+
|
| 35 |
+
from intersuit.model.builder import load_pretrained_model
|
| 36 |
+
from intersuit.mm_utils import tokenizer_image_speech_tokens, process_images
|
| 37 |
+
from intersuit.constants import IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX
|
| 38 |
+
|
| 39 |
+
import ChatTTS
|
| 40 |
+
chat = ChatTTS.Chat()
|
| 41 |
+
chat.load(source='local', compile=True)
|
| 42 |
+
|
| 43 |
+
import warnings
|
| 44 |
+
warnings.filterwarnings("ignore")
|
| 45 |
+
|
| 46 |
+
model_path = "checkpoints/M4-Audio-LongVA-7B-Qwen2"
|
| 47 |
+
video_path = "local_demo/assets/water.mp4"
|
| 48 |
+
audio_path = "local_demo/wav/infer.wav"
|
| 49 |
+
new_audio_path = "local_demo/wav/new_infer.wav"
|
| 50 |
+
max_frames_num = 16 # you can change this to several thousands so long you GPU memory can handle it :)
|
| 51 |
+
gen_kwargs = {"do_sample": True, "temperature": 0.5, "top_p": None, "num_beams": 1, "use_cache": True, "max_new_tokens": 1024}
|
| 52 |
+
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "llava_qwen", device_map="cuda:0", attn_implementation="eager")
|
| 53 |
+
|
| 54 |
+
# original query
|
| 55 |
+
query = "Give a detailed caption of the video as if I am blind."
|
| 56 |
+
query = None # comment this to use ChatTTS to convert the query to audio
|
| 57 |
+
prompt = "<|im_start|>system
|
| 58 |
+
You are a helpful assistant.<|im_end|>
|
| 59 |
+
<|im_start|>user
|
| 60 |
+
<image><|im_end|>
|
| 61 |
+
<|im_start|>user
|
| 62 |
+
<speech>
|
| 63 |
+
<|im_end|>
|
| 64 |
+
<|im_start|>assistant
|
| 65 |
+
"
|
| 66 |
+
input_ids = tokenizer_image_speech_tokens(prompt, tokenizer, IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
|
| 67 |
+
pad_token_ids = (tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id)
|
| 68 |
+
attention_masks = input_ids.ne(pad_token_ids).to(input_ids.device)
|
| 69 |
+
# audio input
|
| 70 |
+
if query is not None:
|
| 71 |
+
audio_path = "./local_demo/wav/" + "infer.wav"
|
| 72 |
+
if os.path.exists(audio_path): os.remove(audio_path) # refresh
|
| 73 |
+
if not os.path.exists(audio_path):
|
| 74 |
+
wav = chat.infer(query)
|
| 75 |
+
try:
|
| 76 |
+
torchaudio.save(audio_path, torch.from_numpy(wav).unsqueeze(0), 24000)
|
| 77 |
+
except:
|
| 78 |
+
torchaudio.save(audio_path, torch.from_numpy(wav), 24000)
|
| 79 |
+
speech = whisper.load_audio(audio_path)
|
| 80 |
+
speech = whisper.pad_or_trim(speech)
|
| 81 |
+
speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0).to(device=model.device, dtype=torch.float16)
|
| 82 |
+
speech_length = torch.LongTensor([speech.shape[0]]).to(model.device)
|
| 83 |
+
|
| 84 |
+
# new query
|
| 85 |
+
new_query = "How many people in the video?"
|
| 86 |
+
new_query = "Okay, I see."
|
| 87 |
+
new_query = "Sorry to interrupt."
|
| 88 |
+
new_query_pos = 10 # which token encounter the new query
|
| 89 |
+
new_query = None # comment this to use ChatTTS to convert the query to audio
|
| 90 |
+
new_prompt = "<|im_start|>system
|
| 91 |
+
You are a helpful assistant.<|im_end|>
|
| 92 |
+
<|im_start|>user
|
| 93 |
+
<speech>
|
| 94 |
+
<|im_end|>
|
| 95 |
+
<|im_start|>assistant
|
| 96 |
+
"
|
| 97 |
+
new_input_ids = tokenizer_image_speech_tokens(new_prompt, tokenizer, IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
|
| 98 |
+
# audio input
|
| 99 |
+
if new_query is not None:
|
| 100 |
+
new_audio_path = "./local_demo/wav/" + "new_infer.wav"
|
| 101 |
+
if os.path.exists(new_audio_path): os.remove(new_audio_path) # refresh
|
| 102 |
+
if not os.path.exists(new_audio_path):
|
| 103 |
+
wav = chat.infer(new_query)
|
| 104 |
+
try:
|
| 105 |
+
torchaudio.save(new_audio_path, torch.from_numpy(wav).unsqueeze(0), 24000)
|
| 106 |
+
except:
|
| 107 |
+
torchaudio.save(new_audio_path, torch.from_numpy(wav), 24000)
|
| 108 |
+
new_speech = whisper.load_audio(new_audio_path)
|
| 109 |
+
new_speech = whisper.pad_or_trim(new_speech)
|
| 110 |
+
new_speech = whisper.log_mel_spectrogram(new_speech, n_mels=128).permute(1, 0).to(device=model.device, dtype=torch.float16)
|
| 111 |
+
new_speech_length = torch.LongTensor([new_speech.shape[0]]).to(model.device)
|
| 112 |
+
|
| 113 |
+
#video input
|
| 114 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
| 115 |
+
total_frame_num = len(vr)
|
| 116 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
|
| 117 |
+
frame_idx = uniform_sampled_frames.tolist()
|
| 118 |
+
frames = vr.get_batch(frame_idx).asnumpy()
|
| 119 |
+
video_tensor = image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(model.device, dtype=torch.bfloat16)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
with torch.inference_mode():
|
| 123 |
+
output_ids = model.generate_parallel(input_ids,
|
| 124 |
+
attention_mask=attention_masks,
|
| 125 |
+
images=[video_tensor],
|
| 126 |
+
modalities=["video"],
|
| 127 |
+
speeches=speech.unsqueeze(0),
|
| 128 |
+
speech_lengths=speech_length,
|
| 129 |
+
new_query=new_input_ids,
|
| 130 |
+
new_query_pos=new_query_pos,
|
| 131 |
+
new_speeches=new_speech.unsqueeze(0),
|
| 132 |
+
new_speech_lengths=new_speech_length,
|
| 133 |
+
query_str=query,
|
| 134 |
+
new_query_str=new_query,
|
| 135 |
+
tokenizer=tokenizer,
|
| 136 |
+
**gen_kwargs)
|
| 137 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
| 138 |
+
|
| 139 |
+
```
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
For more information about the interaction inference pipeline, please visit the [M4 GitHub repository](https://github.com/patrick-tssn/M4).
|