char128-shift Tokenizer
A fixed-size Hugging Face–compatible character tokenizer with a dedicated SHIFT token (↨) to represent uppercase letters. Instead of assigning separate tokens to uppercase A–Z, each uppercase is encoded as ↨ + lowercase (e.g., H → ↨h).
This repository contains the ready-to-use tokenizer, which can be loaded with AutoTokenizer, as well as the script that made it (in src\ folder)
Features
- Fixed 128-token vocabulary (including specials).
- Uppercase encoding via SHIFT token, no duplicate uppercase letters in vocab.
- WordLevel model with explicit closed character set.
- Pre-tokenizer splits by Unicode grapheme clusters (
\X), so emoji and diacritics are preserved. - Normalizer maps
A–Z→↨+ lowercase explicitly. - Decoder concatenates tokens directly (no extra spaces).
Installation
You only need transformers (for Python interface) and optionally tokenizers (for advanced building).
pip install transformers>=4.40 tokenizers>=0.14
No PyTorch/TensorFlow/Flax required to use the tokenizer itself.
Usage
from transformers import AutoTokenizer
# Replace with your Hub repo
tok = AutoTokenizer.from_pretrained("Corianas/char128_shift_tokenizer")
print(tok.vocab_size) # 128
ids = tok.encode("Hello, There!\n<eos>")
print(ids)
print(tok.decode(ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
# → "↨hello, ↨there!\n<eos>"
Restoring Uppercase
The decode output will show SHIFT markers (e.g., ↨h). For display, restore casing:
def restore_uppercase(s: str, shift="↨"):
out, i, n = [], 0, len(s)
while i < n:
if s[i] == shift and i+1 < n and s[i+1] != shift:
out.append(s[i+1].upper()); i += 2
else:
out.append(s[i]); i += 1
return "".join(out)
ids = tok.encode("Hello, There!\n<eos>")
decoded = tok.decode(ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(decoded) # "↨hello, ↨there!\n<eos>"
print(restore_uppercase(decoded)) # "Hello, There!\n<eos>"
Vocabulary
The 128 tokens include:
- Lowercase letters
a–z - Digits
0–9 - Whitespace (space,
\n,\t) - Punctuation and symbols (configurable)
- Diacritics like
è,éif needed - Special tokens
<pad>,<unk>,<bos>,<eos> - SHIFT token
↨
Uppercase A–Z are not in vocab — they are represented via SHIFT.
Integration
For dataset preparation:
import numpy as np, os
from transformers import AutoTokenizer
tok = AutoTokenizer.from_pretrained("char128_shift_tokenizer")
with open("input.txt", "r", encoding="utf-8") as f:
data = f.read()
n = len(data)
train_txt, val_txt = data[:int(0.9*n)], data[int(0.9*n):]
train_ids = tok.encode(train_txt)
val_ids = tok.encode(val_txt)
np.array(train_ids, dtype=np.uint16).tofile("train.bin")
np.array(val_ids, dtype=np.uint16).tofile("val.bin")
Your model’s vocab_size must match (128).
Known Edge Cases
- Non-ASCII uppercase (like
À,É) are lowercased without SHIFT unless you add explicit rules. - Spaces in decode are disabled by setting decoder to concat; if you see them, ensure your tokenizer was saved with
tok.decoder = decoders.Sequence([]). - Unknown chars →
<unk>. Ensure your vocab includes everything you expect.
License
MIT
Example Test
from transformers import AutoTokenizer
tok = AutoTokenizer.from_pretrained("Corianas/char128_shift_tokenizer")
ids = tok.encode("Hello, There!\n<eos>")
print(ids)
print(tok.decode(ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
# ↨hello, ↨there!\n<eos>