helsinki_new_ver2

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ZH on the sarahwei/Taiwanese-Minnan-Sutiau dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6670
  • Bleu: 1.5307

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 23000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu
0.8583 0.4230 1000 0.9198 0.1959
0.7889 0.8460 2000 0.8619 0.1895
0.7595 1.2690 3000 0.8263 0.9704
0.7098 1.6920 4000 0.7982 1.0918
0.6963 2.1151 5000 0.7757 1.1072
0.6818 2.5381 6000 0.7568 1.1531
0.6642 2.9611 7000 0.7403 1.2418
0.659 3.3841 8000 0.7262 1.5448
0.6287 3.8071 9000 0.7135 1.3160
0.6251 4.2301 10000 0.7020 1.4177
0.6079 4.6531 11000 0.6918 1.7637
0.6003 5.0761 12000 0.6825 1.3500
0.5874 5.4992 13000 0.6743 1.5090
0.5941 5.9222 14000 0.6670 1.5307

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
77.5M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train Curiousfox/helsinki_new_ver2