helsinki_new_ver2
This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ZH on the sarahwei/Taiwanese-Minnan-Sutiau dataset. It achieves the following results on the evaluation set:
- Loss: 0.6670
- Bleu: 1.5307
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 23000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu |
---|---|---|---|---|
0.8583 | 0.4230 | 1000 | 0.9198 | 0.1959 |
0.7889 | 0.8460 | 2000 | 0.8619 | 0.1895 |
0.7595 | 1.2690 | 3000 | 0.8263 | 0.9704 |
0.7098 | 1.6920 | 4000 | 0.7982 | 1.0918 |
0.6963 | 2.1151 | 5000 | 0.7757 | 1.1072 |
0.6818 | 2.5381 | 6000 | 0.7568 | 1.1531 |
0.6642 | 2.9611 | 7000 | 0.7403 | 1.2418 |
0.659 | 3.3841 | 8000 | 0.7262 | 1.5448 |
0.6287 | 3.8071 | 9000 | 0.7135 | 1.3160 |
0.6251 | 4.2301 | 10000 | 0.7020 | 1.4177 |
0.6079 | 4.6531 | 11000 | 0.6918 | 1.7637 |
0.6003 | 5.0761 | 12000 | 0.6825 | 1.3500 |
0.5874 | 5.4992 | 13000 | 0.6743 | 1.5090 |
0.5941 | 5.9222 | 14000 | 0.6670 | 1.5307 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support