helsinki_new_ver5.0
This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ZH on the sarahwei/Taiwanese-Minnan-Example-Sentences dataset. It achieves the following results on the evaluation set:
- Loss: 0.1331
- Bleu: 24.8564
- Ter: 51.5767
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 15000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Ter |
---|---|---|---|---|---|
0.3275 | 0.5656 | 1000 | 0.2091 | 1.0420 | 80.6027 |
0.2661 | 1.1312 | 2000 | 0.1750 | 8.8029 | 63.5599 |
0.2414 | 1.6968 | 3000 | 0.1592 | 14.6322 | 59.3833 |
0.2165 | 2.2624 | 4000 | 0.1512 | 17.7486 | 55.9776 |
0.2079 | 2.8281 | 5000 | 0.1457 | 19.9557 | 54.1135 |
0.1953 | 3.3937 | 6000 | 0.1433 | 21.4108 | 53.4688 |
0.188 | 3.9593 | 7000 | 0.1410 | 21.9998 | 52.9643 |
0.1804 | 4.5249 | 8000 | 0.1379 | 22.9829 | 52.6279 |
0.1797 | 5.0905 | 9000 | 0.1367 | 23.1706 | 52.3196 |
0.1745 | 5.6561 | 10000 | 0.1355 | 23.3668 | 51.8290 |
0.1662 | 6.2217 | 11000 | 0.1343 | 24.1466 | 51.7169 |
0.1691 | 6.7873 | 12000 | 0.1342 | 24.4332 | 51.9972 |
0.1631 | 7.3529 | 13000 | 0.1335 | 24.4473 | 51.6608 |
0.1646 | 7.9186 | 14000 | 0.1330 | 24.6473 | 51.6748 |
0.1599 | 8.4842 | 15000 | 0.1331 | 24.8564 | 51.5767 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support