helsinki_new_ver5.1

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ZH on the sarahwei/Taiwanese-Minnan-Example-Sentences dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1774
  • Bleu: 31.4017
  • Ter: 49.3755

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 14000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Ter
0.1528 0.5656 1000 0.1781 30.0868 50.0852
0.1622 1.1312 2000 0.1786 30.0483 49.7162
0.1481 1.6968 3000 0.1779 30.6107 49.3613
0.1369 2.2624 4000 0.1773 30.3317 49.4039
0.1434 2.8281 5000 0.1771 31.3488 48.7653
0.1283 3.3937 6000 0.1768 31.9413 48.7085
0.1295 3.9593 7000 0.1770 31.8531 49.2052
0.1256 4.5249 8000 0.1769 31.6029 49.2052
0.123 5.0905 9000 0.1774 31.4017 49.3755

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
21
Safetensors
Model size
77.5M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train Curiousfox/helsinki_new_ver5.1