helsinki_new_ver6.0

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ZH on the sarahwei/Taiwanese-Minnan-Sutiau dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6805
  • Bleu: 0.7794
  • Ter: 99.4557

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 14000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Ter
1.0468 0.4230 1000 0.9170 0.0299 130.9748
0.905 0.8460 2000 0.8370 0.0696 112.0732
0.8412 1.2690 3000 0.7959 0.2321 106.4819
0.8053 1.6920 4000 0.7646 0.7019 100.2474
0.777 2.1151 5000 0.7416 0.8663 100.4453
0.757 2.5381 6000 0.7222 0.8328 100.2474
0.7492 2.9611 7000 0.7088 0.8269 100.0990
0.716 3.3841 8000 0.6968 0.7207 100.0495
0.7169 3.8071 9000 0.6877 0.8254 99.4062
0.6951 4.2301 10000 0.6805 0.7794 99.4557

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
7
Safetensors
Model size
77.5M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train Curiousfox/helsinki_new_ver6.0