helsinki_new_ver6.1

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ZH on the sarahwei/Taiwanese-Minnan-Sutiau dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6244
  • Bleu: 0.9767
  • Ter: 97.2786

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 14000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Ter
0.7463 0.4230 1000 0.7283 0.8156 100.0990
0.7462 0.8460 2000 0.7027 0.8965 99.9010
0.7074 1.2690 3000 0.6837 1.2326 99.4557
0.6903 1.6920 4000 0.6676 0.9807 98.8125
0.6701 2.1151 5000 0.6540 0.9098 98.3177
0.6633 2.5381 6000 0.6416 1.0929 97.9713
0.6627 2.9611 7000 0.6327 0.9645 97.6744
0.6328 3.3841 8000 0.6244 0.9767 97.2786

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
77.5M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train Curiousfox/helsinki_new_ver6.1