|  | --- | 
					
						
						|  | license: apache-2.0 | 
					
						
						|  | base_model: jackaduma/SecBERT | 
					
						
						|  | tags: | 
					
						
						|  | - generated_from_trainer | 
					
						
						|  | metrics: | 
					
						
						|  | - precision | 
					
						
						|  | - recall | 
					
						
						|  | - f1 | 
					
						
						|  | - accuracy | 
					
						
						|  | model-index: | 
					
						
						|  | - name: Cyber-ThreaD/SecBERT-AttackER | 
					
						
						|  | results: [] | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | <!-- This model card has been generated automatically according to the information the Trainer had access to. You | 
					
						
						|  | should probably proofread and complete it, then remove this comment. --> | 
					
						
						|  |  | 
					
						
						|  | # Cyber-ThreaD/SecBERT-AttackER | 
					
						
						|  |  | 
					
						
						|  | This model is a fine-tuned version of [jackaduma/SecBERT](https://huggingface.co/jackaduma/SecBERT) on an unknown dataset. | 
					
						
						|  | It achieves the following results on the evaluation set: | 
					
						
						|  | - Loss: 1.6932 | 
					
						
						|  | - Precision: 0.3931 | 
					
						
						|  | - Recall: 0.4987 | 
					
						
						|  | - F1: 0.4397 | 
					
						
						|  | - Accuracy: 0.7295 | 
					
						
						|  |  | 
					
						
						|  | ## Model description | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Intended uses & limitations | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Training and evaluation data | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Training procedure | 
					
						
						|  |  | 
					
						
						|  | ### Training hyperparameters | 
					
						
						|  |  | 
					
						
						|  | The following hyperparameters were used during training: | 
					
						
						|  | - learning_rate: 2e-05 | 
					
						
						|  | - train_batch_size: 2 | 
					
						
						|  | - eval_batch_size: 2 | 
					
						
						|  | - seed: 42 | 
					
						
						|  | - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | 
					
						
						|  | - lr_scheduler_type: linear | 
					
						
						|  | - num_epochs: 10.0 | 
					
						
						|  |  | 
					
						
						|  | ### Training results | 
					
						
						|  |  | 
					
						
						|  | | Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy | | 
					
						
						|  | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 
					
						
						|  | | 1.7927        | 0.4   | 500   | 1.5607          | 0.0956    | 0.0780 | 0.0859 | 0.6139   | | 
					
						
						|  | | 1.3551        | 0.81  | 1000  | 1.3530          | 0.2064    | 0.2381 | 0.2211 | 0.6495   | | 
					
						
						|  | | 1.0432        | 1.21  | 1500  | 1.3107          | 0.2269    | 0.3082 | 0.2614 | 0.6740   | | 
					
						
						|  | | 0.8468        | 1.61  | 2000  | 1.2497          | 0.2447    | 0.3373 | 0.2836 | 0.6767   | | 
					
						
						|  | | 0.7775        | 2.01  | 2500  | 1.2710          | 0.2895    | 0.3730 | 0.3260 | 0.6939   | | 
					
						
						|  | | 0.5374        | 2.42  | 3000  | 1.3020          | 0.3006    | 0.4048 | 0.3450 | 0.7044   | | 
					
						
						|  | | 0.5071        | 2.82  | 3500  | 1.2614          | 0.2959    | 0.4048 | 0.3419 | 0.7081   | | 
					
						
						|  | | 0.4237        | 3.22  | 4000  | 1.3251          | 0.3367    | 0.4405 | 0.3817 | 0.7166   | | 
					
						
						|  | | 0.3597        | 3.63  | 4500  | 1.3853          | 0.3423    | 0.4524 | 0.3897 | 0.7125   | | 
					
						
						|  | | 0.3632        | 4.03  | 5000  | 1.4156          | 0.3559    | 0.4524 | 0.3984 | 0.7127   | | 
					
						
						|  | | 0.2589        | 4.43  | 5500  | 1.4472          | 0.3504    | 0.4709 | 0.4018 | 0.7173   | | 
					
						
						|  | | 0.323         | 4.83  | 6000  | 1.3997          | 0.3452    | 0.4603 | 0.3946 | 0.7222   | | 
					
						
						|  | | 0.2167        | 5.24  | 6500  | 1.5194          | 0.3467    | 0.4590 | 0.3950 | 0.7233   | | 
					
						
						|  | | 0.2363        | 5.64  | 7000  | 1.5585          | 0.3507    | 0.4722 | 0.4025 | 0.7222   | | 
					
						
						|  | | 0.2721        | 6.04  | 7500  | 1.5420          | 0.3715    | 0.4854 | 0.4209 | 0.7210   | | 
					
						
						|  | | 0.2073        | 6.45  | 8000  | 1.5878          | 0.3536    | 0.4854 | 0.4091 | 0.7147   | | 
					
						
						|  | | 0.2021        | 6.85  | 8500  | 1.6637          | 0.3722    | 0.4854 | 0.4214 | 0.7197   | | 
					
						
						|  | | 0.1648        | 7.25  | 9000  | 1.6724          | 0.3795    | 0.4788 | 0.4234 | 0.7255   | | 
					
						
						|  | | 0.1927        | 7.66  | 9500  | 1.6891          | 0.3801    | 0.4947 | 0.4299 | 0.7245   | | 
					
						
						|  | | 0.1958        | 8.06  | 10000 | 1.6774          | 0.3937    | 0.4974 | 0.4395 | 0.7281   | | 
					
						
						|  | | 0.1508        | 8.46  | 10500 | 1.7379          | 0.3815    | 0.4854 | 0.4272 | 0.7259   | | 
					
						
						|  | | 0.184         | 8.86  | 11000 | 1.7001          | 0.3863    | 0.5013 | 0.4364 | 0.7277   | | 
					
						
						|  | | 0.1696        | 9.27  | 11500 | 1.6932          | 0.3931    | 0.4987 | 0.4397 | 0.7295   | | 
					
						
						|  | | 0.1425        | 9.67  | 12000 | 1.7137          | 0.3824    | 0.5013 | 0.4339 | 0.7276   | | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ### Framework versions | 
					
						
						|  |  | 
					
						
						|  | - Transformers 4.36.0.dev0 | 
					
						
						|  | - Pytorch 2.1.0+cu118 | 
					
						
						|  | - Datasets 2.15.0 | 
					
						
						|  | - Tokenizers 0.15.0 | 
					
						
						|  |  | 
					
						
						|  | ### Citing & Authors | 
					
						
						|  |  | 
					
						
						|  | If you use the model kindly cite the following work | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  | @inproceedings{deka2024attacker, | 
					
						
						|  | title={AttackER: Towards Enhancing Cyber-Attack Attribution with a Named Entity Recognition Dataset}, | 
					
						
						|  | author={Deka, Pritam and Rajapaksha, Sampath and Rani, Ruby and Almutairi, Amirah and Karafili, Erisa}, | 
					
						
						|  | booktitle={International Conference on Web Information Systems Engineering}, | 
					
						
						|  | pages={255--270}, | 
					
						
						|  | year={2024}, | 
					
						
						|  | organization={Springer} | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  |  |