DOOGLAK's picture
update model card README.md
8dfeb9d
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - article50v9_wikigold_split
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: Article_50v9_NER_Model_3Epochs_UNAUGMENTED
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: article50v9_wikigold_split
          type: article50v9_wikigold_split
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0
          - name: Recall
            type: recall
            value: 0
          - name: F1
            type: f1
            value: 0
          - name: Accuracy
            type: accuracy
            value: 0.7781540876976561

Article_50v9_NER_Model_3Epochs_UNAUGMENTED

This model is a fine-tuned version of bert-base-cased on the article50v9_wikigold_split dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7640
  • Precision: 0.0
  • Recall: 0.0
  • F1: 0.0
  • Accuracy: 0.7782

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 6 0.9810 0.0918 0.0044 0.0084 0.7772
No log 2.0 12 0.7952 0.0 0.0 0.0 0.7782
No log 3.0 18 0.7640 0.0 0.0 0.0 0.7782

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.11.6