pollen-ner-350

This model is a fine-tuned version of DeepPavlov/rubert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7599
  • Precision: 0.3086
  • Recall: 0.1004
  • F1: 0.1515

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
No log 1.0 44 0.9983 0.0 0.0 0.0
No log 2.0 88 0.9593 0.1818 0.0040 0.0079
No log 3.0 132 0.9094 0.2222 0.0080 0.0155
No log 4.0 176 0.8783 0.2647 0.0181 0.0338
No log 5.0 220 0.8430 0.1961 0.0201 0.0364
No log 6.0 264 0.8117 0.2809 0.0502 0.0852
No log 7.0 308 0.7908 0.2992 0.0763 0.1216
No log 8.0 352 0.7762 0.3 0.0904 0.1389
No log 9.0 396 0.7612 0.3020 0.0904 0.1391
No log 10.0 440 0.7599 0.3086 0.1004 0.1515

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.0+cu128
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for DanielNRU/pollen-ner-350

Adapter
(43)
this model