pollen-ner-450

This model is a fine-tuned version of DeepPavlov/rubert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3956
  • Precision: 0.5539
  • Recall: 0.7329
  • F1: 0.6309

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
No log 1.0 57 0.4861 0.4929 0.6305 0.5533
No log 2.0 114 0.4729 0.4844 0.6526 0.5560
No log 3.0 171 0.4552 0.4877 0.6767 0.5669
No log 4.0 228 0.4348 0.5103 0.6948 0.5884
No log 5.0 285 0.4222 0.5230 0.7088 0.6019
No log 6.0 342 0.4078 0.5356 0.7108 0.6109
No log 7.0 399 0.4068 0.5373 0.7229 0.6164
No log 8.0 456 0.4015 0.5486 0.7369 0.6290
0.7501 9.0 513 0.3970 0.5514 0.7329 0.6293
0.7501 10.0 570 0.3956 0.5539 0.7329 0.6309

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.0+cu128
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for DanielNRU/pollen-ner-450

Adapter
(43)
this model