pollen-ner-750
This model is a fine-tuned version of DeepPavlov/rubert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1931
- Precision: 0.7953
- Recall: 0.8896
- F1: 0.8398
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
No log | 1.0 | 94 | 0.1979 | 0.7802 | 0.8695 | 0.8224 |
No log | 2.0 | 188 | 0.2063 | 0.7583 | 0.8755 | 0.8127 |
No log | 3.0 | 282 | 0.1991 | 0.7770 | 0.8815 | 0.8260 |
No log | 4.0 | 376 | 0.1969 | 0.7825 | 0.8815 | 0.8291 |
No log | 5.0 | 470 | 0.1931 | 0.7953 | 0.8896 | 0.8398 |
0.3927 | 6.0 | 564 | 0.1873 | 0.7975 | 0.8855 | 0.8392 |
0.3927 | 7.0 | 658 | 0.1950 | 0.7809 | 0.8876 | 0.8308 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.7.0+cu128
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for DanielNRU/pollen-ner-750
Base model
DeepPavlov/rubert-base-cased