|
#ifndef __CLIP_HPP__ |
|
#define __CLIP_HPP__ |
|
|
|
#include "ggml_extend.hpp" |
|
#include "model.h" |
|
|
|
|
|
|
|
std::pair<std::unordered_map<std::string, float>, std::string> extract_and_remove_lora(std::string text) { |
|
std::regex re("<lora:([^:]+):([^>]+)>"); |
|
std::smatch matches; |
|
std::unordered_map<std::string, float> filename2multiplier; |
|
|
|
while (std::regex_search(text, matches, re)) { |
|
std::string filename = matches[1].str(); |
|
float multiplier = std::stof(matches[2].str()); |
|
|
|
text = std::regex_replace(text, re, "", std::regex_constants::format_first_only); |
|
|
|
if (multiplier == 0.f) { |
|
continue; |
|
} |
|
|
|
if (filename2multiplier.find(filename) == filename2multiplier.end()) { |
|
filename2multiplier[filename] = multiplier; |
|
} else { |
|
filename2multiplier[filename] += multiplier; |
|
} |
|
} |
|
|
|
return std::make_pair(filename2multiplier, text); |
|
} |
|
|
|
std::vector<std::pair<int, std::u32string>> bytes_to_unicode() { |
|
std::vector<std::pair<int, std::u32string>> byte_unicode_pairs; |
|
std::set<int> byte_set; |
|
for (int b = static_cast<int>('!'); b <= static_cast<int>('~'); ++b) { |
|
byte_set.insert(b); |
|
byte_unicode_pairs.push_back(std::pair<int, std::u32string>(b, unicode_value_to_utf32(b))); |
|
} |
|
for (int b = 161; b <= 172; ++b) { |
|
byte_set.insert(b); |
|
byte_unicode_pairs.push_back(std::pair<int, std::u32string>(b, unicode_value_to_utf32(b))); |
|
} |
|
for (int b = 174; b <= 255; ++b) { |
|
byte_set.insert(b); |
|
byte_unicode_pairs.push_back(std::pair<int, std::u32string>(b, unicode_value_to_utf32(b))); |
|
} |
|
int n = 0; |
|
for (int b = 0; b < 256; ++b) { |
|
if (byte_set.find(b) == byte_set.end()) { |
|
byte_unicode_pairs.push_back(std::pair<int, std::u32string>(b, unicode_value_to_utf32(n + 256))); |
|
++n; |
|
} |
|
} |
|
|
|
return byte_unicode_pairs; |
|
} |
|
|
|
|
|
|
|
typedef std::function<bool(std::string&, std::vector<int32_t>&)> on_new_token_cb_t; |
|
|
|
class CLIPTokenizer { |
|
private: |
|
std::map<int, std::u32string> byte_encoder; |
|
std::map<std::u32string, int> byte_decoder; |
|
std::map<std::u32string, int> encoder; |
|
std::map<int, std::u32string> decoder; |
|
std::map<std::pair<std::u32string, std::u32string>, int> bpe_ranks; |
|
std::regex pat; |
|
int encoder_len; |
|
int bpe_len; |
|
|
|
public: |
|
const std::string UNK_TOKEN = "<|endoftext|>"; |
|
const std::string BOS_TOKEN = "<|startoftext|>"; |
|
const std::string EOS_TOKEN = "<|endoftext|>"; |
|
const std::string PAD_TOKEN = "<|endoftext|>"; |
|
|
|
const int UNK_TOKEN_ID = 49407; |
|
const int BOS_TOKEN_ID = 49406; |
|
const int EOS_TOKEN_ID = 49407; |
|
const int PAD_TOKEN_ID = 49407; |
|
|
|
private: |
|
static std::string strip(const std::string& str) { |
|
std::string::size_type start = str.find_first_not_of(" \t\n\r\v\f"); |
|
std::string::size_type end = str.find_last_not_of(" \t\n\r\v\f"); |
|
|
|
if (start == std::string::npos) { |
|
|
|
return ""; |
|
} |
|
|
|
return str.substr(start, end - start + 1); |
|
} |
|
|
|
static std::string whitespace_clean(std::string text) { |
|
text = std::regex_replace(text, std::regex(R"(\s+)"), " "); |
|
text = strip(text); |
|
return text; |
|
} |
|
|
|
static std::set<std::pair<std::u32string, std::u32string>> get_pairs(const std::vector<std::u32string>& subwords) { |
|
std::set<std::pair<std::u32string, std::u32string>> pairs; |
|
if (subwords.size() == 0) { |
|
return pairs; |
|
} |
|
std::u32string prev_subword = subwords[0]; |
|
for (int i = 1; i < subwords.size(); i++) { |
|
std::u32string subword = subwords[i]; |
|
std::pair<std::u32string, std::u32string> pair(prev_subword, subword); |
|
pairs.insert(pair); |
|
prev_subword = subword; |
|
} |
|
return pairs; |
|
} |
|
|
|
public: |
|
CLIPTokenizer(int pad_token_id = 49407, const std::string& merges_utf8_str = "") |
|
: PAD_TOKEN_ID(pad_token_id) { |
|
if (merges_utf8_str.size() > 0) { |
|
load_from_merges(merges_utf8_str); |
|
} else { |
|
load_from_merges(ModelLoader::load_merges()); |
|
} |
|
} |
|
|
|
void load_from_merges(const std::string& merges_utf8_str) { |
|
auto byte_unicode_pairs = bytes_to_unicode(); |
|
|
|
byte_encoder = std::map<int, std::u32string>(byte_unicode_pairs.begin(), byte_unicode_pairs.end()); |
|
for (auto& pair : byte_unicode_pairs) { |
|
byte_decoder[pair.second] = pair.first; |
|
} |
|
|
|
|
|
|
|
std::vector<std::u32string> merges; |
|
size_t start = 0; |
|
size_t pos; |
|
std::u32string merges_utf32_str = utf8_to_utf32(merges_utf8_str); |
|
while ((pos = merges_utf32_str.find('\n', start)) != std::string::npos) { |
|
merges.push_back(merges_utf32_str.substr(start, pos - start)); |
|
start = pos + 1; |
|
} |
|
|
|
GGML_ASSERT(merges.size() == 48895); |
|
merges = std::vector<std::u32string>(merges.begin() + 1, merges.end()); |
|
std::vector<std::pair<std::u32string, std::u32string>> merge_pairs; |
|
for (const auto& merge : merges) { |
|
size_t space_pos = merge.find(' '); |
|
merge_pairs.emplace_back(merge.substr(0, space_pos), merge.substr(space_pos + 1)); |
|
|
|
|
|
|
|
} |
|
std::vector<std::u32string> vocab; |
|
for (const auto& pair : byte_unicode_pairs) { |
|
vocab.push_back(pair.second); |
|
} |
|
for (const auto& pair : byte_unicode_pairs) { |
|
vocab.push_back(pair.second + utf8_to_utf32("</w>")); |
|
} |
|
for (const auto& merge : merge_pairs) { |
|
vocab.push_back(merge.first + merge.second); |
|
} |
|
vocab.push_back(utf8_to_utf32("<|startoftext|>")); |
|
vocab.push_back(utf8_to_utf32("<|endoftext|>")); |
|
LOG_DEBUG("vocab size: %llu", vocab.size()); |
|
int i = 0; |
|
for (const auto& token : vocab) { |
|
encoder[token] = i; |
|
decoder[i] = token; |
|
i++; |
|
} |
|
encoder_len = i; |
|
|
|
auto it = encoder.find(utf8_to_utf32("img</w>")); |
|
if (it != encoder.end()) { |
|
LOG_DEBUG(" trigger word img already in vocab"); |
|
} else { |
|
LOG_DEBUG(" trigger word img not in vocab yet"); |
|
} |
|
|
|
int rank = 0; |
|
for (const auto& merge : merge_pairs) { |
|
bpe_ranks[merge] = rank++; |
|
} |
|
bpe_len = rank; |
|
}; |
|
|
|
void add_token(const std::string& text) { |
|
std::u32string token = utf8_to_utf32(text); |
|
auto it = encoder.find(token); |
|
if (it != encoder.end()) { |
|
encoder[token] = encoder_len; |
|
decoder[encoder_len] = token; |
|
encoder_len++; |
|
} |
|
} |
|
|
|
std::u32string bpe(const std::u32string& token) { |
|
std::vector<std::u32string> word; |
|
|
|
for (int i = 0; i < token.size() - 1; i++) { |
|
word.emplace_back(1, token[i]); |
|
} |
|
word.push_back(token.substr(token.size() - 1) + utf8_to_utf32("</w>")); |
|
|
|
std::set<std::pair<std::u32string, std::u32string>> pairs = get_pairs(word); |
|
|
|
if (pairs.empty()) { |
|
return token + utf8_to_utf32("</w>"); |
|
} |
|
|
|
while (true) { |
|
auto min_pair_iter = std::min_element(pairs.begin(), |
|
pairs.end(), |
|
[&](const std::pair<std::u32string, std::u32string>& a, |
|
const std::pair<std::u32string, std::u32string>& b) { |
|
if (bpe_ranks.find(a) == bpe_ranks.end()) { |
|
return false; |
|
} else if (bpe_ranks.find(b) == bpe_ranks.end()) { |
|
return true; |
|
} |
|
return bpe_ranks.at(a) < bpe_ranks.at(b); |
|
}); |
|
|
|
const std::pair<std::u32string, std::u32string>& bigram = *min_pair_iter; |
|
|
|
if (bpe_ranks.find(bigram) == bpe_ranks.end()) { |
|
break; |
|
} |
|
|
|
std::u32string first = bigram.first; |
|
std::u32string second = bigram.second; |
|
std::vector<std::u32string> new_word; |
|
int32_t i = 0; |
|
|
|
while (i < word.size()) { |
|
auto it = std::find(word.begin() + i, word.end(), first); |
|
if (it == word.end()) { |
|
new_word.insert(new_word.end(), word.begin() + i, word.end()); |
|
break; |
|
} |
|
new_word.insert(new_word.end(), word.begin() + i, it); |
|
i = static_cast<int32_t>(std::distance(word.begin(), it)); |
|
|
|
if (word[i] == first && i < static_cast<int32_t>(word.size()) - 1 && word[i + 1] == second) { |
|
new_word.push_back(first + second); |
|
i += 2; |
|
} else { |
|
new_word.push_back(word[i]); |
|
i += 1; |
|
} |
|
} |
|
|
|
word = new_word; |
|
|
|
if (word.size() == 1) { |
|
break; |
|
} |
|
pairs = get_pairs(word); |
|
} |
|
|
|
std::u32string result; |
|
for (int i = 0; i < word.size(); i++) { |
|
result += word[i]; |
|
if (i != word.size() - 1) { |
|
result += utf8_to_utf32(" "); |
|
} |
|
} |
|
|
|
return result; |
|
} |
|
|
|
std::vector<int> tokenize(std::string text, |
|
on_new_token_cb_t on_new_token_cb, |
|
size_t max_length = 0, |
|
bool padding = false) { |
|
std::vector<int32_t> tokens = encode(text, on_new_token_cb); |
|
|
|
tokens.insert(tokens.begin(), BOS_TOKEN_ID); |
|
if (max_length > 0) { |
|
if (tokens.size() > max_length - 1) { |
|
tokens.resize(max_length - 1); |
|
tokens.push_back(EOS_TOKEN_ID); |
|
} else { |
|
tokens.push_back(EOS_TOKEN_ID); |
|
if (padding) { |
|
tokens.insert(tokens.end(), max_length - tokens.size(), PAD_TOKEN_ID); |
|
} |
|
} |
|
} |
|
|
|
return tokens; |
|
} |
|
|
|
void pad_tokens(std::vector<int>& tokens, |
|
std::vector<float>& weights, |
|
size_t max_length = 0, |
|
bool padding = false) { |
|
if (max_length > 0 && padding) { |
|
size_t n = std::ceil(tokens.size() * 1.0 / (max_length - 2)); |
|
if (n == 0) { |
|
n = 1; |
|
} |
|
size_t length = max_length * n; |
|
LOG_DEBUG("token length: %llu", length); |
|
std::vector<int> new_tokens; |
|
std::vector<float> new_weights; |
|
new_tokens.push_back(BOS_TOKEN_ID); |
|
new_weights.push_back(1.0); |
|
int token_idx = 0; |
|
for (int i = 1; i < length; i++) { |
|
if (token_idx >= tokens.size()) { |
|
break; |
|
} |
|
if (i % max_length == 0) { |
|
new_tokens.push_back(BOS_TOKEN_ID); |
|
new_weights.push_back(1.0); |
|
} else if (i % max_length == max_length - 1) { |
|
new_tokens.push_back(EOS_TOKEN_ID); |
|
new_weights.push_back(1.0); |
|
} else { |
|
new_tokens.push_back(tokens[token_idx]); |
|
new_weights.push_back(weights[token_idx]); |
|
token_idx++; |
|
} |
|
} |
|
|
|
new_tokens.push_back(EOS_TOKEN_ID); |
|
new_weights.push_back(1.0); |
|
tokens = new_tokens; |
|
weights = new_weights; |
|
|
|
if (padding) { |
|
tokens.insert(tokens.end(), length - tokens.size(), PAD_TOKEN_ID); |
|
weights.insert(weights.end(), length - weights.size(), 1.0); |
|
} |
|
} |
|
} |
|
|
|
std::string clean_up_tokenization(std::string& text) { |
|
std::regex pattern(R"( ,)"); |
|
|
|
std::string result = std::regex_replace(text, pattern, ","); |
|
return result; |
|
} |
|
|
|
std::string decode(const std::vector<int>& tokens) { |
|
std::string text = ""; |
|
for (int t : tokens) { |
|
if (t == 49406 || t == 49407) |
|
continue; |
|
std::u32string ts = decoder[t]; |
|
|
|
std::string s = utf32_to_utf8(ts); |
|
if (s.length() >= 4) { |
|
if (ends_with(s, "</w>")) { |
|
text += s.replace(s.length() - 4, s.length() - 1, "") + " "; |
|
} else { |
|
text += s; |
|
} |
|
} else { |
|
text += " " + s; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text = clean_up_tokenization(text); |
|
return trim(text); |
|
} |
|
|
|
std::vector<int> encode(std::string text, on_new_token_cb_t on_new_token_cb) { |
|
std::string original_text = text; |
|
std::vector<int32_t> bpe_tokens; |
|
text = whitespace_clean(text); |
|
std::transform(text.begin(), text.end(), text.begin(), [](unsigned char c) { return std::tolower(c); }); |
|
|
|
std::regex pat(R"(<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[[:alpha:]]+|[[:digit:]]|[^[:space:][:alpha:][:digit:]]+)", |
|
std::regex::icase); |
|
|
|
std::smatch matches; |
|
std::string str = text; |
|
std::vector<std::string> token_strs; |
|
while (std::regex_search(str, matches, pat)) { |
|
bool skip = on_new_token_cb(str, bpe_tokens); |
|
if (skip) { |
|
continue; |
|
} |
|
for (auto& token : matches) { |
|
std::string token_str = token.str(); |
|
std::u32string utf32_token; |
|
for (int i = 0; i < token_str.length(); i++) { |
|
unsigned char b = token_str[i]; |
|
utf32_token += byte_encoder[b]; |
|
} |
|
auto bpe_strs = bpe(utf32_token); |
|
size_t start = 0; |
|
size_t pos; |
|
while ((pos = bpe_strs.find(' ', start)) != std::u32string::npos) { |
|
auto bpe_str = bpe_strs.substr(start, pos - start); |
|
bpe_tokens.push_back(encoder[bpe_str]); |
|
token_strs.push_back(utf32_to_utf8(bpe_str)); |
|
|
|
start = pos + 1; |
|
} |
|
auto bpe_str = bpe_strs.substr(start, bpe_strs.size() - start); |
|
bpe_tokens.push_back(encoder[bpe_str]); |
|
token_strs.push_back(utf32_to_utf8(bpe_str)); |
|
} |
|
str = matches.suffix(); |
|
} |
|
std::stringstream ss; |
|
ss << "["; |
|
for (auto token : token_strs) { |
|
ss << "\"" << token << "\", "; |
|
} |
|
ss << "]"; |
|
|
|
|
|
return bpe_tokens; |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
struct CLIPMLP : public GGMLBlock { |
|
protected: |
|
bool use_gelu; |
|
|
|
public: |
|
CLIPMLP(int64_t d_model, int64_t intermediate_size) { |
|
blocks["fc1"] = std::shared_ptr<GGMLBlock>(new Linear(d_model, intermediate_size)); |
|
blocks["fc2"] = std::shared_ptr<GGMLBlock>(new Linear(intermediate_size, d_model)); |
|
|
|
if (d_model == 1024 || d_model == 1280) { |
|
use_gelu = true; |
|
} else { |
|
use_gelu = false; |
|
} |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
|
|
auto fc1 = std::dynamic_pointer_cast<Linear>(blocks["fc1"]); |
|
auto fc2 = std::dynamic_pointer_cast<Linear>(blocks["fc2"]); |
|
|
|
x = fc1->forward(ctx, x); |
|
if (use_gelu) { |
|
x = ggml_gelu_inplace(ctx, x); |
|
} else { |
|
x = ggml_gelu_quick_inplace(ctx, x); |
|
} |
|
x = fc2->forward(ctx, x); |
|
return x; |
|
} |
|
}; |
|
|
|
struct CLIPLayer : public GGMLBlock { |
|
protected: |
|
int64_t d_model; |
|
int64_t n_head; |
|
int64_t intermediate_size; |
|
|
|
public: |
|
CLIPLayer(int64_t d_model, |
|
int64_t n_head, |
|
int64_t intermediate_size) |
|
: d_model(d_model), |
|
n_head(n_head), |
|
intermediate_size(intermediate_size) { |
|
blocks["self_attn"] = std::shared_ptr<GGMLBlock>(new MultiheadAttention(d_model, n_head, true, true)); |
|
|
|
blocks["layer_norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(d_model)); |
|
blocks["layer_norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(d_model)); |
|
|
|
blocks["mlp"] = std::shared_ptr<GGMLBlock>(new CLIPMLP(d_model, intermediate_size)); |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, bool mask = true) { |
|
|
|
auto self_attn = std::dynamic_pointer_cast<MultiheadAttention>(blocks["self_attn"]); |
|
auto layer_norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["layer_norm1"]); |
|
auto layer_norm2 = std::dynamic_pointer_cast<LayerNorm>(blocks["layer_norm2"]); |
|
auto mlp = std::dynamic_pointer_cast<CLIPMLP>(blocks["mlp"]); |
|
|
|
x = ggml_add(ctx, x, self_attn->forward(ctx, layer_norm1->forward(ctx, x), mask)); |
|
x = ggml_add(ctx, x, mlp->forward(ctx, layer_norm2->forward(ctx, x))); |
|
return x; |
|
} |
|
}; |
|
|
|
struct CLIPEncoder : public GGMLBlock { |
|
protected: |
|
int64_t n_layer; |
|
|
|
public: |
|
CLIPEncoder(int64_t n_layer, |
|
int64_t d_model, |
|
int64_t n_head, |
|
int64_t intermediate_size) |
|
: n_layer(n_layer) { |
|
for (int i = 0; i < n_layer; i++) { |
|
std::string name = "layers." + std::to_string(i); |
|
blocks[name] = std::shared_ptr<GGMLBlock>(new CLIPLayer(d_model, n_head, intermediate_size)); |
|
} |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, int clip_skip = -1, bool mask = true) { |
|
|
|
int layer_idx = n_layer - 1; |
|
|
|
if (clip_skip > 0) { |
|
layer_idx = n_layer - clip_skip; |
|
} |
|
|
|
for (int i = 0; i < n_layer; i++) { |
|
|
|
if (i == layer_idx + 1) { |
|
break; |
|
} |
|
std::string name = "layers." + std::to_string(i); |
|
auto layer = std::dynamic_pointer_cast<CLIPLayer>(blocks[name]); |
|
x = layer->forward(ctx, x, mask); |
|
|
|
} |
|
return x; |
|
} |
|
}; |
|
|
|
class CLIPEmbeddings : public GGMLBlock { |
|
protected: |
|
int64_t embed_dim; |
|
int64_t vocab_size; |
|
int64_t num_positions; |
|
|
|
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") { |
|
enum ggml_type token_wtype = (tensor_types.find(prefix + "token_embedding.weight") != tensor_types.end()) ? tensor_types[prefix + "token_embedding.weight"] : GGML_TYPE_F32; |
|
enum ggml_type position_wtype = GGML_TYPE_F32; |
|
|
|
params["token_embedding.weight"] = ggml_new_tensor_2d(ctx, token_wtype, embed_dim, vocab_size); |
|
params["position_embedding.weight"] = ggml_new_tensor_2d(ctx, position_wtype, embed_dim, num_positions); |
|
} |
|
|
|
public: |
|
CLIPEmbeddings(int64_t embed_dim, |
|
int64_t vocab_size = 49408, |
|
int64_t num_positions = 77) |
|
: embed_dim(embed_dim), |
|
vocab_size(vocab_size), |
|
num_positions(num_positions) { |
|
} |
|
|
|
struct ggml_tensor* get_token_embed_weight() { |
|
return params["token_embedding.weight"]; |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, |
|
struct ggml_tensor* input_ids, |
|
struct ggml_tensor* custom_embed_weight) { |
|
|
|
auto token_embed_weight = params["token_embedding.weight"]; |
|
auto position_embed_weight = params["position_embedding.weight"]; |
|
|
|
GGML_ASSERT(input_ids->ne[0] == position_embed_weight->ne[1]); |
|
input_ids = ggml_reshape_3d(ctx, input_ids, input_ids->ne[0], 1, input_ids->ne[1]); |
|
auto token_embedding = ggml_get_rows(ctx, custom_embed_weight != NULL ? custom_embed_weight : token_embed_weight, input_ids); |
|
token_embedding = ggml_reshape_3d(ctx, token_embedding, token_embedding->ne[0], token_embedding->ne[1], token_embedding->ne[3]); |
|
|
|
|
|
auto x = ggml_add(ctx, |
|
token_embedding, |
|
position_embed_weight); |
|
return x; |
|
} |
|
}; |
|
|
|
class CLIPVisionEmbeddings : public GGMLBlock { |
|
protected: |
|
int64_t embed_dim; |
|
int64_t num_channels; |
|
int64_t patch_size; |
|
int64_t image_size; |
|
int64_t num_patches; |
|
int64_t num_positions; |
|
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") { |
|
enum ggml_type patch_wtype = GGML_TYPE_F16; |
|
enum ggml_type class_wtype = GGML_TYPE_F32; |
|
enum ggml_type position_wtype = GGML_TYPE_F32; |
|
|
|
params["patch_embedding.weight"] = ggml_new_tensor_4d(ctx, patch_wtype, patch_size, patch_size, num_channels, embed_dim); |
|
params["class_embedding"] = ggml_new_tensor_1d(ctx, class_wtype, embed_dim); |
|
params["position_embedding.weight"] = ggml_new_tensor_2d(ctx, position_wtype, embed_dim, num_positions); |
|
} |
|
|
|
public: |
|
CLIPVisionEmbeddings(int64_t embed_dim, |
|
int64_t num_channels = 3, |
|
int64_t patch_size = 14, |
|
int64_t image_size = 224) |
|
: embed_dim(embed_dim), |
|
num_channels(num_channels), |
|
patch_size(patch_size), |
|
image_size(image_size) { |
|
num_patches = (image_size / patch_size) * (image_size / patch_size); |
|
num_positions = num_patches + 1; |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* pixel_values) { |
|
|
|
|
|
GGML_ASSERT(pixel_values->ne[0] == image_size && pixel_values->ne[1] == image_size && pixel_values->ne[2] == num_channels); |
|
|
|
auto patch_embed_weight = params["patch_embedding.weight"]; |
|
auto class_embed_weight = params["class_embedding"]; |
|
auto position_embed_weight = params["position_embedding.weight"]; |
|
|
|
|
|
struct ggml_tensor* patch_embedding; |
|
int64_t N = pixel_values->ne[3]; |
|
patch_embedding = ggml_nn_conv_2d(ctx, pixel_values, patch_embed_weight, NULL, patch_size, patch_size); |
|
patch_embedding = ggml_reshape_3d(ctx, patch_embedding, num_patches, embed_dim, N); |
|
patch_embedding = ggml_cont(ctx, ggml_permute(ctx, patch_embedding, 1, 0, 2, 3)); |
|
patch_embedding = ggml_reshape_4d(ctx, patch_embedding, 1, embed_dim, num_patches, N); |
|
|
|
struct ggml_tensor* class_embedding = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, embed_dim, N); |
|
class_embedding = ggml_repeat(ctx, class_embed_weight, class_embedding); |
|
class_embedding = ggml_reshape_4d(ctx, class_embedding, 1, embed_dim, 1, N); |
|
|
|
struct ggml_tensor* x = ggml_concat(ctx, class_embedding, patch_embedding, 2); |
|
x = ggml_reshape_3d(ctx, x, embed_dim, num_positions, N); |
|
x = ggml_add(ctx, x, position_embed_weight); |
|
return x; |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
enum CLIPVersion { |
|
OPENAI_CLIP_VIT_L_14, |
|
OPEN_CLIP_VIT_H_14, |
|
OPEN_CLIP_VIT_BIGG_14, |
|
}; |
|
|
|
class CLIPTextModel : public GGMLBlock { |
|
protected: |
|
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") { |
|
if (version == OPEN_CLIP_VIT_BIGG_14) { |
|
enum ggml_type wtype = GGML_TYPE_F32; |
|
params["text_projection"] = ggml_new_tensor_2d(ctx, wtype, projection_dim, hidden_size); |
|
} |
|
} |
|
|
|
public: |
|
CLIPVersion version = OPENAI_CLIP_VIT_L_14; |
|
|
|
int32_t vocab_size = 49408; |
|
int32_t n_token = 77; |
|
int32_t hidden_size = 768; |
|
int32_t intermediate_size = 3072; |
|
int32_t n_head = 12; |
|
int32_t n_layer = 12; |
|
int32_t projection_dim = 1280; |
|
int32_t clip_skip = -1; |
|
bool with_final_ln = true; |
|
|
|
CLIPTextModel(CLIPVersion version = OPENAI_CLIP_VIT_L_14, |
|
int clip_skip_value = -1, |
|
bool with_final_ln = true) |
|
: version(version), with_final_ln(with_final_ln) { |
|
if (version == OPEN_CLIP_VIT_H_14) { |
|
hidden_size = 1024; |
|
intermediate_size = 4096; |
|
n_head = 16; |
|
n_layer = 24; |
|
} else if (version == OPEN_CLIP_VIT_BIGG_14) { |
|
hidden_size = 1280; |
|
intermediate_size = 5120; |
|
n_head = 20; |
|
n_layer = 32; |
|
} |
|
set_clip_skip(clip_skip_value); |
|
|
|
blocks["embeddings"] = std::shared_ptr<GGMLBlock>(new CLIPEmbeddings(hidden_size, vocab_size, n_token)); |
|
blocks["encoder"] = std::shared_ptr<GGMLBlock>(new CLIPEncoder(n_layer, hidden_size, n_head, intermediate_size)); |
|
blocks["final_layer_norm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size)); |
|
} |
|
|
|
void set_clip_skip(int skip) { |
|
if (skip <= 0) { |
|
return; |
|
} |
|
clip_skip = skip; |
|
} |
|
|
|
struct ggml_tensor* get_token_embed_weight() { |
|
auto embeddings = std::dynamic_pointer_cast<CLIPEmbeddings>(blocks["embeddings"]); |
|
return embeddings->get_token_embed_weight(); |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, |
|
struct ggml_tensor* input_ids, |
|
struct ggml_tensor* tkn_embeddings, |
|
size_t max_token_idx = 0, |
|
bool return_pooled = false) { |
|
|
|
auto embeddings = std::dynamic_pointer_cast<CLIPEmbeddings>(blocks["embeddings"]); |
|
auto encoder = std::dynamic_pointer_cast<CLIPEncoder>(blocks["encoder"]); |
|
auto final_layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["final_layer_norm"]); |
|
|
|
auto x = embeddings->forward(ctx, input_ids, tkn_embeddings); |
|
x = encoder->forward(ctx, x, return_pooled ? -1 : clip_skip, true); |
|
if (return_pooled || with_final_ln) { |
|
x = final_layer_norm->forward(ctx, x); |
|
} |
|
|
|
if (return_pooled) { |
|
auto text_projection = params["text_projection"]; |
|
ggml_tensor* pooled = ggml_view_1d(ctx, x, hidden_size, x->nb[1] * max_token_idx); |
|
if (text_projection != NULL) { |
|
pooled = ggml_nn_linear(ctx, pooled, text_projection, NULL); |
|
} else { |
|
LOG_DEBUG("Missing text_projection matrix, assuming identity..."); |
|
} |
|
return pooled; |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
class CLIPVisionModel : public GGMLBlock { |
|
public: |
|
|
|
int32_t num_channels = 3; |
|
int32_t patch_size = 14; |
|
int32_t image_size = 224; |
|
int32_t num_positions = 257; |
|
int32_t hidden_size = 1024; |
|
int32_t intermediate_size = 4096; |
|
int32_t n_head = 16; |
|
int32_t n_layer = 24; |
|
|
|
public: |
|
CLIPVisionModel(CLIPVersion version = OPENAI_CLIP_VIT_L_14) { |
|
if (version == OPEN_CLIP_VIT_H_14) { |
|
hidden_size = 1280; |
|
intermediate_size = 5120; |
|
n_head = 16; |
|
n_layer = 32; |
|
} else if (version == OPEN_CLIP_VIT_BIGG_14) { |
|
hidden_size = 1664; |
|
intermediate_size = 8192; |
|
n_head = 16; |
|
n_layer = 48; |
|
} |
|
|
|
blocks["embeddings"] = std::shared_ptr<GGMLBlock>(new CLIPVisionEmbeddings(hidden_size, num_channels, patch_size, image_size)); |
|
blocks["pre_layernorm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size)); |
|
blocks["encoder"] = std::shared_ptr<GGMLBlock>(new CLIPEncoder(n_layer, hidden_size, n_head, intermediate_size)); |
|
blocks["post_layernorm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size)); |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* pixel_values, bool return_pooled = true) { |
|
|
|
auto embeddings = std::dynamic_pointer_cast<CLIPVisionEmbeddings>(blocks["embeddings"]); |
|
auto pre_layernorm = std::dynamic_pointer_cast<LayerNorm>(blocks["pre_layernorm"]); |
|
auto encoder = std::dynamic_pointer_cast<CLIPEncoder>(blocks["encoder"]); |
|
auto post_layernorm = std::dynamic_pointer_cast<LayerNorm>(blocks["post_layernorm"]); |
|
|
|
auto x = embeddings->forward(ctx, pixel_values); |
|
x = pre_layernorm->forward(ctx, x); |
|
x = encoder->forward(ctx, x, -1, false); |
|
|
|
auto last_hidden_state = x; |
|
x = post_layernorm->forward(ctx, x); |
|
|
|
GGML_ASSERT(x->ne[3] == 1); |
|
if (return_pooled) { |
|
ggml_tensor* pooled = ggml_cont(ctx, ggml_view_2d(ctx, x, x->ne[0], x->ne[2], x->nb[2], 0)); |
|
return pooled; |
|
} else { |
|
|
|
return last_hidden_state; |
|
} |
|
} |
|
}; |
|
|
|
class CLIPProjection : public UnaryBlock { |
|
protected: |
|
int64_t in_features; |
|
int64_t out_features; |
|
bool transpose_weight; |
|
|
|
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") { |
|
enum ggml_type wtype = tensor_types.find(prefix + "weight") != tensor_types.end() ? tensor_types[prefix + "weight"] : GGML_TYPE_F32; |
|
if (transpose_weight) { |
|
params["weight"] = ggml_new_tensor_2d(ctx, wtype, out_features, in_features); |
|
} else { |
|
params["weight"] = ggml_new_tensor_2d(ctx, wtype, in_features, out_features); |
|
} |
|
} |
|
|
|
public: |
|
CLIPProjection(int64_t in_features, |
|
int64_t out_features, |
|
bool transpose_weight = false) |
|
: in_features(in_features), |
|
out_features(out_features), |
|
transpose_weight(transpose_weight) {} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
struct ggml_tensor* w = params["weight"]; |
|
if (transpose_weight) { |
|
w = ggml_cont(ctx, ggml_transpose(ctx, w)); |
|
} |
|
return ggml_nn_linear(ctx, x, w, NULL); |
|
} |
|
}; |
|
|
|
class CLIPVisionModelProjection : public GGMLBlock { |
|
public: |
|
int32_t hidden_size = 1024; |
|
int32_t projection_dim = 768; |
|
int32_t image_size = 224; |
|
|
|
public: |
|
CLIPVisionModelProjection(CLIPVersion version = OPENAI_CLIP_VIT_L_14, |
|
bool transpose_proj_w = false) { |
|
if (version == OPEN_CLIP_VIT_H_14) { |
|
hidden_size = 1280; |
|
projection_dim = 1024; |
|
} else if (version == OPEN_CLIP_VIT_BIGG_14) { |
|
hidden_size = 1664; |
|
} |
|
|
|
blocks["vision_model"] = std::shared_ptr<GGMLBlock>(new CLIPVisionModel(version)); |
|
blocks["visual_projection"] = std::shared_ptr<GGMLBlock>(new CLIPProjection(hidden_size, projection_dim, transpose_proj_w)); |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* pixel_values) { |
|
|
|
|
|
auto vision_model = std::dynamic_pointer_cast<CLIPVisionModel>(blocks["vision_model"]); |
|
auto visual_projection = std::dynamic_pointer_cast<CLIPProjection>(blocks["visual_projection"]); |
|
|
|
auto x = vision_model->forward(ctx, pixel_values); |
|
x = visual_projection->forward(ctx, x); |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
struct CLIPTextModelRunner : public GGMLRunner { |
|
CLIPTextModel model; |
|
|
|
CLIPTextModelRunner(ggml_backend_t backend, |
|
std::map<std::string, enum ggml_type>& tensor_types, |
|
const std::string prefix, |
|
CLIPVersion version = OPENAI_CLIP_VIT_L_14, |
|
int clip_skip_value = 1, |
|
bool with_final_ln = true) |
|
: GGMLRunner(backend), model(version, clip_skip_value, with_final_ln) { |
|
model.init(params_ctx, tensor_types, prefix); |
|
} |
|
|
|
std::string get_desc() { |
|
return "clip"; |
|
} |
|
|
|
void set_clip_skip(int clip_skip) { |
|
model.set_clip_skip(clip_skip); |
|
} |
|
|
|
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) { |
|
model.get_param_tensors(tensors, prefix); |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, |
|
struct ggml_tensor* input_ids, |
|
struct ggml_tensor* embeddings, |
|
size_t max_token_idx = 0, |
|
bool return_pooled = false) { |
|
size_t N = input_ids->ne[1]; |
|
size_t n_token = input_ids->ne[0]; |
|
if (input_ids->ne[0] > model.n_token) { |
|
GGML_ASSERT(input_ids->ne[0] % model.n_token == 0); |
|
input_ids = ggml_reshape_2d(ctx, input_ids, model.n_token, input_ids->ne[0] / model.n_token); |
|
} |
|
|
|
return model.forward(ctx, input_ids, embeddings, max_token_idx, return_pooled); |
|
} |
|
|
|
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids, |
|
int num_custom_embeddings = 0, |
|
void* custom_embeddings_data = NULL, |
|
size_t max_token_idx = 0, |
|
bool return_pooled = false) { |
|
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx); |
|
|
|
input_ids = to_backend(input_ids); |
|
|
|
struct ggml_tensor* embeddings = NULL; |
|
|
|
if (num_custom_embeddings > 0 && custom_embeddings_data != NULL) { |
|
auto token_embed_weight = model.get_token_embed_weight(); |
|
auto custom_embeddings = ggml_new_tensor_2d(compute_ctx, |
|
token_embed_weight->type, |
|
model.hidden_size, |
|
num_custom_embeddings); |
|
set_backend_tensor_data(custom_embeddings, custom_embeddings_data); |
|
|
|
|
|
embeddings = ggml_concat(compute_ctx, token_embed_weight, custom_embeddings, 1); |
|
} |
|
|
|
struct ggml_tensor* hidden_states = forward(compute_ctx, input_ids, embeddings, max_token_idx, return_pooled); |
|
|
|
ggml_build_forward_expand(gf, hidden_states); |
|
|
|
return gf; |
|
} |
|
|
|
void compute(const int n_threads, |
|
struct ggml_tensor* input_ids, |
|
int num_custom_embeddings, |
|
void* custom_embeddings_data, |
|
size_t max_token_idx, |
|
bool return_pooled, |
|
ggml_tensor** output, |
|
ggml_context* output_ctx = NULL) { |
|
auto get_graph = [&]() -> struct ggml_cgraph* { |
|
return build_graph(input_ids, num_custom_embeddings, custom_embeddings_data, max_token_idx, return_pooled); |
|
}; |
|
GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx); |
|
} |
|
}; |
|
|
|
#endif |
|
|