CrossEncoder based on cross-encoder/ms-marco-MiniLM-L12-v2
This is a Cross Encoder model finetuned from cross-encoder/ms-marco-MiniLM-L12-v2 using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: cross-encoder/ms-marco-MiniLM-L12-v2
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the ๐ค Hub
model = CrossEncoder("Davidsamuel101/ft-ms-marco-MiniLM-L12-v2-claims-reranker-v2")
# Get scores for pairs of texts
pairs = [
['Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.', 'At very high concentrations (100 times atmospheric concentration, or greater), carbon dioxide can be toxic to animal life, so raising the concentration to 10,000 ppm (1%) or higher for several hours will eliminate pests such as whiteflies and spider mites in a greenhouse.'],
['Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.', 'Plants can grow as much as 50 percent faster in concentrations of 1,000 ppm CO 2 when compared with ambient conditions, though this assumes no change in climate and no limitation on other nutrients.'],
['Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.', 'Higher carbon dioxide concentrations will favourably affect plant growth and demand for water.'],
['Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.', "Carbon dioxide in the Earth's atmosphere is essential to life and to most of the planetary biosphere."],
['Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.', 'Rennie 2009: "Claim 1: Anthropogenic CO2 can\'t be changing climate, because CO2 is only a trace gas in the atmosphere and the amount produced by humans is dwarfed by the amount from volcanoes and other natural sources.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.',
[
'At very high concentrations (100 times atmospheric concentration, or greater), carbon dioxide can be toxic to animal life, so raising the concentration to 10,000 ppm (1%) or higher for several hours will eliminate pests such as whiteflies and spider mites in a greenhouse.',
'Plants can grow as much as 50 percent faster in concentrations of 1,000 ppm CO 2 when compared with ambient conditions, though this assumes no change in climate and no limitation on other nutrients.',
'Higher carbon dioxide concentrations will favourably affect plant growth and demand for water.',
"Carbon dioxide in the Earth's atmosphere is essential to life and to most of the planetary biosphere.",
'Rennie 2009: "Claim 1: Anthropogenic CO2 can\'t be changing climate, because CO2 is only a trace gas in the atmosphere and the amount produced by humans is dwarfed by the amount from volcanoes and other natural sources.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Dataset:
claims-evidence-dev
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 5, "always_rerank_positives": true }
Metric | Value |
---|---|
map | 0.9904 (-0.0096) |
mrr@5 | 1.0000 (+0.0000) |
ndcg@5 | 0.9882 (-0.0118) |
Training Details
Training Dataset
Unnamed Dataset
- Size: 23,770 training samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string int details - min: 38 characters
- mean: 118.57 characters
- max: 226 characters
- min: 14 characters
- mean: 144.96 characters
- max: 1176 characters
- 0: ~83.70%
- 1: ~16.30%
- Samples:
text1 text2 label Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.
At very high concentrations (100 times atmospheric concentration, or greater), carbon dioxide can be toxic to animal life, so raising the concentration to 10,000 ppm (1%) or higher for several hours will eliminate pests such as whiteflies and spider mites in a greenhouse.
1
Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.
Plants can grow as much as 50 percent faster in concentrations of 1,000 ppm CO 2 when compared with ambient conditions, though this assumes no change in climate and no limitation on other nutrients.
1
Not only is there no scientific evidence that CO2 is a pollutant, higher CO2 concentrations actually help ecosystems support more plant and animal life.
Higher carbon dioxide concentrations will favourably affect plant growth and demand for water.
1
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 10.0, "num_negatives": 4, "activation_fn": "torch.nn.modules.activation.Sigmoid" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16learning_rate
: 3e-06num_train_epochs
: 5bf16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | claims-evidence-dev_ndcg@5 |
---|---|---|---|
0.0336 | 50 | 1.2496 | - |
0.0673 | 100 | 1.2605 | 0.9523 (-0.0477) |
0.1009 | 150 | 1.1969 | - |
0.1346 | 200 | 1.2353 | 0.9529 (-0.0471) |
0.1682 | 250 | 1.2114 | - |
0.2019 | 300 | 1.1438 | 0.9551 (-0.0449) |
0.2355 | 350 | 1.2062 | - |
0.2692 | 400 | 1.1631 | 0.9568 (-0.0432) |
0.3028 | 450 | 1.115 | - |
0.3365 | 500 | 1.2029 | 0.9582 (-0.0418) |
0.3701 | 550 | 1.0615 | - |
0.4038 | 600 | 1.185 | 0.9649 (-0.0351) |
0.4374 | 650 | 1.0651 | - |
0.4711 | 700 | 1.0951 | 0.9682 (-0.0318) |
0.5047 | 750 | 1.1267 | - |
0.5384 | 800 | 1.0822 | 0.9727 (-0.0273) |
0.5720 | 850 | 1.0658 | - |
0.6057 | 900 | 1.0113 | 0.9785 (-0.0215) |
0.6393 | 950 | 1.0578 | - |
0.6729 | 1000 | 1.074 | 0.9829 (-0.0171) |
0.7066 | 1050 | 1.0287 | - |
0.7402 | 1100 | 0.9337 | 0.9873 (-0.0127) |
0.7739 | 1150 | 0.9798 | - |
0.8075 | 1200 | 0.9697 | 0.9899 (-0.0101) |
0.8412 | 1250 | 0.984 | - |
0.8748 | 1300 | 0.9913 | 0.9898 (-0.0102) |
0.9085 | 1350 | 1.0126 | - |
0.9421 | 1400 | 0.9458 | 0.9897 (-0.0103) |
0.9758 | 1450 | 0.9594 | - |
1.0094 | 1500 | 0.9798 | 0.9896 (-0.0104) |
1.0431 | 1550 | 0.9599 | - |
1.0767 | 1600 | 0.9485 | 0.9887 (-0.0113) |
1.1104 | 1650 | 0.9021 | - |
1.1440 | 1700 | 0.9778 | 0.9887 (-0.0113) |
1.1777 | 1750 | 0.9836 | - |
1.2113 | 1800 | 0.939 | 0.9912 (-0.0088) |
1.2450 | 1850 | 0.9476 | - |
1.2786 | 1900 | 0.964 | 0.9914 (-0.0086) |
1.3122 | 1950 | 0.9238 | - |
1.3459 | 2000 | 0.9811 | 0.9895 (-0.0105) |
1.3795 | 2050 | 0.905 | - |
1.4132 | 2100 | 0.8979 | 0.9896 (-0.0104) |
1.4468 | 2150 | 0.8998 | - |
1.4805 | 2200 | 0.9016 | 0.9896 (-0.0104) |
1.5141 | 2250 | 0.9183 | - |
1.5478 | 2300 | 0.8805 | 0.9896 (-0.0104) |
1.5814 | 2350 | 0.8672 | - |
1.6151 | 2400 | 0.8822 | 0.9896 (-0.0104) |
1.6487 | 2450 | 0.8724 | - |
1.6824 | 2500 | 0.9397 | 0.9883 (-0.0117) |
1.7160 | 2550 | 0.8903 | - |
1.7497 | 2600 | 0.9305 | 0.9882 (-0.0118) |
1.7833 | 2650 | 0.8741 | - |
1.8170 | 2700 | 0.8951 | 0.9874 (-0.0126) |
1.8506 | 2750 | 0.8958 | - |
1.8843 | 2800 | 0.8529 | 0.9873 (-0.0127) |
1.9179 | 2850 | 0.9468 | - |
1.9515 | 2900 | 0.8683 | 0.9882 (-0.0118) |
1.9852 | 2950 | 0.9145 | - |
2.0188 | 3000 | 0.9137 | 0.9883 (-0.0117) |
2.0525 | 3050 | 0.8175 | - |
2.0861 | 3100 | 0.911 | 0.9883 (-0.0117) |
2.1198 | 3150 | 0.8749 | - |
2.1534 | 3200 | 0.8491 | 0.9883 (-0.0117) |
2.1871 | 3250 | 0.9057 | - |
2.2207 | 3300 | 0.9034 | 0.9882 (-0.0118) |
2.2544 | 3350 | 0.8505 | - |
2.2880 | 3400 | 0.8762 | 0.9883 (-0.0117) |
2.3217 | 3450 | 0.8974 | - |
2.3553 | 3500 | 0.8832 | 0.9884 (-0.0116) |
2.3890 | 3550 | 0.851 | - |
2.4226 | 3600 | 0.8584 | 0.9890 (-0.0110) |
2.4563 | 3650 | 0.9032 | - |
2.4899 | 3700 | 0.8963 | 0.9893 (-0.0107) |
2.5236 | 3750 | 0.8756 | - |
2.5572 | 3800 | 0.843 | 0.9882 (-0.0118) |
2.5908 | 3850 | 0.8778 | - |
2.6245 | 3900 | 0.8434 | 0.9882 (-0.0118) |
2.6581 | 3950 | 0.9193 | - |
2.6918 | 4000 | 0.8724 | 0.9875 (-0.0125) |
2.7254 | 4050 | 0.9062 | - |
2.7591 | 4100 | 0.8807 | 0.9875 (-0.0125) |
2.7927 | 4150 | 0.8252 | - |
2.8264 | 4200 | 0.8725 | 0.9875 (-0.0125) |
2.8600 | 4250 | 0.9094 | - |
2.8937 | 4300 | 0.8589 | 0.9874 (-0.0126) |
2.9273 | 4350 | 0.8625 | - |
2.9610 | 4400 | 0.8138 | 0.9874 (-0.0126) |
2.9946 | 4450 | 0.9217 | - |
3.0283 | 4500 | 0.8871 | 0.9872 (-0.0128) |
3.0619 | 4550 | 0.8504 | - |
3.0956 | 4600 | 0.944 | 0.9873 (-0.0127) |
3.1292 | 4650 | 0.8258 | - |
3.1629 | 4700 | 0.9054 | 0.9874 (-0.0126) |
3.1965 | 4750 | 0.8297 | - |
3.2301 | 4800 | 0.8483 | 0.9875 (-0.0125) |
3.2638 | 4850 | 0.909 | - |
3.2974 | 4900 | 0.8486 | 0.9892 (-0.0108) |
3.3311 | 4950 | 0.8937 | - |
3.3647 | 5000 | 0.8821 | 0.9874 (-0.0126) |
3.3984 | 5050 | 0.873 | - |
3.4320 | 5100 | 0.8773 | 0.9874 (-0.0126) |
3.4657 | 5150 | 0.8592 | - |
3.4993 | 5200 | 0.8449 | 0.9882 (-0.0118) |
3.5330 | 5250 | 0.8651 | - |
3.5666 | 5300 | 0.8943 | 0.9882 (-0.0118) |
3.6003 | 5350 | 0.8535 | - |
3.6339 | 5400 | 0.8687 | 0.9882 (-0.0118) |
3.6676 | 5450 | 0.9213 | - |
3.7012 | 5500 | 0.887 | 0.9882 (-0.0118) |
3.7349 | 5550 | 0.8787 | - |
3.7685 | 5600 | 0.8466 | 0.9882 (-0.0118) |
3.8022 | 5650 | 0.8517 | - |
3.8358 | 5700 | 0.8349 | 0.9883 (-0.0117) |
3.8694 | 5750 | 0.8647 | - |
3.9031 | 5800 | 0.8406 | 0.9882 (-0.0118) |
3.9367 | 5850 | 0.8385 | - |
3.9704 | 5900 | 0.8631 | 0.9882 (-0.0118) |
4.0040 | 5950 | 0.823 | - |
4.0377 | 6000 | 0.9163 | 0.9881 (-0.0119) |
4.0713 | 6050 | 0.8373 | - |
4.1050 | 6100 | 0.892 | 0.9882 (-0.0118) |
4.1386 | 6150 | 0.8666 | - |
4.1723 | 6200 | 0.8536 | 0.9882 (-0.0118) |
4.2059 | 6250 | 0.8784 | - |
4.2396 | 6300 | 0.9616 | 0.9882 (-0.0118) |
4.2732 | 6350 | 0.8464 | - |
4.3069 | 6400 | 0.865 | 0.9882 (-0.0118) |
4.3405 | 6450 | 0.8411 | - |
4.3742 | 6500 | 0.8943 | 0.9882 (-0.0118) |
4.4078 | 6550 | 0.8577 | - |
4.4415 | 6600 | 0.8683 | 0.9882 (-0.0118) |
4.4751 | 6650 | 0.8706 | - |
4.5087 | 6700 | 0.8645 | 0.9882 (-0.0118) |
4.5424 | 6750 | 0.8899 | - |
4.5760 | 6800 | 0.8593 | 0.9882 (-0.0118) |
4.6097 | 6850 | 0.8838 | - |
4.6433 | 6900 | 0.8379 | 0.9882 (-0.0118) |
4.6770 | 6950 | 0.8759 | - |
4.7106 | 7000 | 0.8608 | 0.9882 (-0.0118) |
4.7443 | 7050 | 0.8858 | - |
4.7779 | 7100 | 0.8594 | 0.9882 (-0.0118) |
4.8116 | 7150 | 0.8403 | - |
4.8452 | 7200 | 0.8898 | 0.9882 (-0.0118) |
4.8789 | 7250 | 0.8382 | - |
4.9125 | 7300 | 0.8307 | 0.9882 (-0.0118) |
4.9462 | 7350 | 0.8601 | - |
4.9798 | 7400 | 0.8076 | 0.9882 (-0.0118) |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.13.2
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu128
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 1,273
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Davidsamuel101/ft-ms-marco-MiniLM-L12-v2-claims-reranker-v2
Base model
microsoft/MiniLM-L12-H384-uncased
Quantized
cross-encoder/ms-marco-MiniLM-L12-v2
Evaluation results
- Map on claims evidence devself-reported0.990
- Mrr@5 on claims evidence devself-reported1.000
- Ndcg@5 on claims evidence devself-reported0.988