bge-m3_kicon_15 / README.md
Day1Kim's picture
Add new SentenceTransformer model
c09673b verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:41881
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-m3
widget:
  - source_sentence: 얕은 기초의 허용 수평 지지력을 결정할  고려해야 하는 주요 요소는 무엇인가?
    sentences:
      - >-
        ④계측기간과빈도는측정하고자하는계측값의변화정도및변화의지속시간과관련되며비탈면의파괴속도가빠른경우또는변화가있는경우에는측정빈도를높여측정하여야하고변화가장기간지속되는경우에는측정기간도이에맞춰측정하여야한다
        .⑤깎기비탈면의계측기설치위치는비탈면자체및불연속면등에의해이완된암반의거동을충분히고려하고유사한조건하에서계측예를참고로하여선정하여
      - >-
        건설기준제정또는개정에따른경과조치이기준은발간시점부터사용하며,이미시행중에있는설계용역이나건설공사는발주기관의장이필요하다고인정하는경우종전에적용하고있는기준을그대로사용할수있습니다.
      - >-
        (2)강도가크고불연속면의간격이넓으며틈새가작은암반일경우에는양호한암반으로판정하고기초의지지력을산정한다
        .(3)강도가작고불연속면의간격이매우좁으며풍화상태가심하거나세편상태인암반은불량한암반으로판정하고기초의지지력을산정한다
        .(4)암반의상태를정량적으로등급화하고 ,그에따라등급별로암반의극한지지력을정하여기초를설계할수있다 .(5)암반판정이모호한경우
        ,지질학적으로해명이안되는경우 ,암석이심하게교란된경우 ,절리나층리가지표의경사와유사한경우 ,암의표면이
        30°이상경사진경우에는암반의지지력결정에유의하여야한다 .4.1.7수평지지력(1)얕은기초의허용수평지지력은
        기초저면의전단저항력을적정안전율로나눈값으로하나
        ,지표면근처에서안정된지지층을확보할수있는경우에는기초전면에작용하는수동토압을안전율로나눈값을적용하여허용수평지지력으로 고려할수있으며 ,다만
        ,수동토압이발휘되기위해서는주동변위의 2~20배가발생하여야하므로수동토압을전부보는것에주의가요구된다 .
  - source_sentence: 33.3품질및성능시험 섹션에서는 어떤 종류의 시험이 포함되어 있습니까?
    sentences:
      - >-
        제정:2016년6월30일심의:중앙건설기술심의위원회소관부서:국토교통부기술혁신과관련단체:한국지반공학회개정:2021년5월12일자문검토:국가건설기준센터
        건설기준위원회작성기관:한국지반공학회건설기준
        주요내용제정또는개정(년.월)도로교설계기준∙그동안제개정된각종규칙,기준및최근연구성과등을검토반영,심미적디자인추구,철근콘크리트기둥의연성도내진설계법부록도입함.개정(2010)건축구조설계기준
        ∙건축구조설계기준제정제정(2005.4)건축구조설계기준 ∙재검토기한신설등개정개정(2009.8)건축구조기준
        ∙부분개정개정(2009.12)건축구조기준 ∙재검토기한의연도수정등개정개정(2013.12)건축구조기준 ∙특정한지형조건의기본지상적설하중
        등개정개정(2015.10)건축구조기준∙성능설계법도입및돌발상황에의한하중추가등기준전반에대한최근연구결과및개선된공법반영개정(2016.
      - >-
        연약지반설계일반 KDS113005:2021KDS110000지반설계기준
        11.일반사항1.1목적(1)이기준은지반에건설되는구조물에대하여안정성을확보하지못하는연약지반의설계기준을제시하는것을목적으로한다
        .1.2적용범위(1)이기준은지반에건설되는구조물에대하여안정성을확보하지못하는연약지반의보강이나대책공법설계에적용된다
        .(2)연약지반은쌓기규모나구조물목적에따라상대적인의미로평가되며
        ,원지반이건설되는구조물에대해안정성을만족하지못할경우연약지반으로취급하여지반보강이나대책을강구하여야한다 .(3)연약지반대책공법으로서
        지반개량을시행할경우기초지반의특성 ,구조물의종류와크기 ,시공기간과난이도 ,경제성 ,환경영향등을고려하여적합한개량공법을선정하여야한다 .
      - 2조사 22.3계획 23.재료 33.1일반사항  33.2재료특성  33.3품질및성능시험  34.설계 34.1일반사항  34.
  - source_sentence: 비탈면 녹화의 목적은 무엇인가요?
    sentences:
      - 재료24.설계24.1격자블록및돌(블록 )붙이기24.2콘크리트뿜어붙이기 (숏크리트 )44.3비탈면녹화5
      - >-
        개정(1986.11)구조물기초설계기준∙그간의지반공학분야의기술발전을반영하고,관련기준의개정에따른내용조정등수정하고국제표준단위인미터법과SI단위로통일개정.개정(2002.12)구조물기초설계기준
        ∙구조물기초설계기준개정개정(2008.11)구조물기초설계기준∙토목,건축공사등의건설구조물기초설계를국가의설계기준형식에부합시키고,신기술,신공법등의시대적변화를적용시키며설계자의창의적설계를유도할수있도록개정.개정(2014.2)구조물기초설계기준∙도심지지반침하현상의지속적발생으로국민불안이증대하고있으나,다소미흡한지반침하와관련된조사및설계관련하여공동및싱크홀을조사하도록철도설계기준개정사항(2015)을반영하여개정.부분개정(2016.5)KDS115030:2016∙건설기준코드체계전환에따라기존의코드에서진동기계기초에해당되는부분을정비함.제정(2016.6)KDS115030:2016∙한국산업표준과건설기준부합화에따라수정함수정(2018.7)KDS115030:2021∙건설기준코드의통일성을위해작성지침과부합화,
      - >-
        시공기면까지의높이(H)일반철도 고속철도일반철도 고속철도H<5.0m H<3.0m 1:1.5
        1:1.85.0m≦H<10.0m3.0m≦H<9.0m1:1.8 1:1.810.0m≦H<15.0m9.0m≦H<15.0m1:2.0
        1:2.0H≧15.0mH≧15.0m 1:2.3
        1:2.3표4.1-2쌓기비탈면(철도)의표준경사가.쌓기비탈면의최종기울기는쌓기지지지반의형상및강도등을고려한비탈면안정을해석하여결정해야하며실제시공시변경된사항이있을경우에는반드시재설계를해야한다
        .나.소단은일반철도의경우시공기면에서매5m마다설치하고 ,고속철도는상부노반쌓기와하부노반쌓기의경계에설치하고다음 6.0m높이마다설치한다
        .이때일반철도와고속철도의소단폭은1.5m로하고외측으로향하는 5%의횡단기울기를둔다.소단의위치가쌓기지지지반면에서
        3.0m이하인경우에는그소단을생략한다 .
  - source_sentence: 비탈면이나 옹벽 구조물의 설계  허용되는 변형은 무엇입니까?
    sentences:
      - >-
        4.1.5돌(블록 )붙이기공법의배수시설(1)돌(블록
        )붙이기를한경우배면의지하수배수를위해일정두께를자갈로뒤채움하며,세립분의유출위험이있는경우에는필터재료를설치한다
        .(2)비탈면배면으로부터유입되는지하수또는표면에서유입되는물을배수시키기위해설치하는배수시설은다음과같다 .
      - >-
        낙석 ‧토석대책시설 KDS117020:2020KDS110000지반설계기준
        11.일반사항1.1목적(1)이기준은낙석‧토석대책시설에대한일반적인설계기준과설계방법을제시하여낙석과토석류로인해발생가능한인명과시설물피해를방지또는저감하는것을목적으로한다
        .1.2적용범위(1)이기준은낙석과토석류대책을위한낙석방지망 ,낙석방지울타리 ,낙석방지옹벽 ,피암터널 ,토석류대책시설의설계에적용한다
        .1.3참고기준1.3.1관련법규내용없음1.3.2관련기준내용없음1.4용어의정의내용없음1.5시설물의구성(1)낙석과토석류대책시설은낙석방지망
        ,낙석방지울타리 ,낙석방지옹벽 ,피암터널 ,토석류대책시설등으로구성된다 .(2)낙석과토석류대책시설중토석류대책시설은발생억제시설
        ,흐름완화및제어시설 ,퇴적및유도시설로나눌수있다 .
      - >-
        4.2기초구조물의설계거동한계4.2.1기능수행수준에 따른설계거동한계(1)비탈면이나옹벽구조물은부분적인항복과소성변형을허용할수있으나
        ,주변구조물및부속시설들은탄성또는탄성에준하는거동을허용할수있으므로기초내진설계시유의하여야한다
        .(2)얕은기초및깊은기초는지진시그주변지반의소성거동은허용할수있으나
        ,기초구조물자체와모든상부구조물및부속시설이탄성또는탄성에준하는거동을허용한다 .
  - source_sentence: 억지말뚝으로 보강된 비탈면의 내진설계 결정 기준은 무엇인가요?
    sentences:
      - >-
        지반계측 KDS111015:2021KDS110000지반설계기준 344.2.2.2 계측기기운용기법(1)
        인력에의한계측기기운용과자동화장비에의한운용기법으로크게구분할수있으며, 붕괴및활동의진행특성, 계측대상시설물의중요도 , 피해발생시영향,
        경제성, 계측빈도등을고려하여운용기법을선택하여야한다.4.2.2.3 일반적인계측관리의자동화(1)
        기록지또는저장장치에계측자료를기록할때까지를자동화하고 , 그후의처리는별도로컴퓨터로실시하는반자동계측관리기법과 ,
        자료수집ㆍ해석ㆍ그래프화까지를유선ㆍ무선으로온라인화된시스템으로일관하여실시하는전자동계측관리기법및상기의두가지방법을병용하는기법으로구분하며
        , 계측대상조건을고려하여운용기법을선정하여야한다.4.2.2.4 피해방지및최소화방법(1) 조기에징후를감지하는것이중요하고 ,
        모니터링과동시에신속하게그정보를전달ㆍ처리하는것이필요하며계측자료의수집ㆍ처리ㆍ해석까지를일괄하여처리하는자동화기술을사용하는것을고려하여야한다.
      - >-
        (9)매립지반에설치하는기초는특별히주의하여야하는데 ,기초하부의접지압력은가급적균등하게분포하도록설계하고
        ,접지압력의분포는흙또는암,그리고구조물의특성에따라달라지며 ,토질역학및암석역학적원리들과일치하여야한다 .2.조사및계획∙내용없음
        .3.재료∙내용없음 .4.설계4.1지지력산정4.1.1지지력산정을위한고려사항(1)기초설계시시추조사
        ,현장및실내시험을통하여지반특성을파악한후지지력을산정한다
        .그러나상재하중이작은구조물또는가설구조물의기초는인근구조물의경험값,기초설계및시공성과 ,현장시험자료를통하여지지력을추정할수있다 .
      - >-
        비탈면보강공법 KDS117015:2020KDS110000지반설계기준 9입시켜야한다
        .4.3.3내진설계여부(1)억지말뚝으로보강된비탈면의내진설계는보강되지않은비탈면의내진설계여부에따라결정하며 ,KDS
        119000의비탈면내진등급을참고한다 .(2)억지말뚝으로보강된비탈면의지진시안정해석은 4.4및KDS 119000을참조한다
        .4.4지진시안정해석4.4.1네일(1)지진시네일로보강된비탈면의안정해석에서는내적안정과외적안정성을검토한다
        .(2)네일로보강된비탈면의지진시안정해석에서고려하는지진하중은파괴토체의자중과지진계수 (Am)를곱한등가지진력으로 고려하며
        ,파괴토체의중심에횡방향으로작용시킨다 .(3)지진에의한지진계수는 KDS 119000(1.6.5)에서제시하는유효수평지반가
        속도(S)를이용하여산정한다 .4.4.2록볼트(1)지진시록볼트로보강된비탈면의안정해석에서는외적안정성을검토한다
        .(2)록볼트로보강된비탈면의지진시안정해석에서고려하는지진하중은파괴토체의자중과지진계수 (Am)를곱한등가지진력으로 고려하며
        ,파괴토체의중심에횡방향으로작용시킨다 .
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: SentenceTransformer based on BAAI/bge-m3
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy@1
            value: 0.6014324428958575
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7603561749903214
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8102981029810298
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8654665118079752
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6014324428958575
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2534520583301071
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16205962059620596
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08654665118079752
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6014324428958575
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7603561749903214
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8102981029810298
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8654665118079752
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7346720961043999
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6927054335736117
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6985716777061386
            name: Cosine Map@100

SentenceTransformer based on BAAI/bge-m3

This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Day1Kim/bge-m3_kicon_15")
# Run inference
sentences = [
    '억지말뚝으로 보강된 비탈면의 내진설계 결정 기준은 무엇인가요?',
    '비탈면보강공법 KDS117015:2020KDS110000지반설계기준 9입시켜야한다 .4.3.3내진설계여부(1)억지말뚝으로보강된비탈면의내진설계는보강되지않은비탈면의내진설계여부에따라결정하며 ,KDS 119000의비탈면내진등급을참고한다 .(2)억지말뚝으로보강된비탈면의지진시안정해석은 4.4및KDS 119000을참조한다 .4.4지진시안정해석4.4.1네일(1)지진시네일로보강된비탈면의안정해석에서는내적안정과외적안정성을검토한다 .(2)네일로보강된비탈면의지진시안정해석에서고려하는지진하중은파괴토체의자중과지진계수 (Am)를곱한등가지진력으로 고려하며 ,파괴토체의중심에횡방향으로작용시킨다 .(3)지진에의한지진계수는 KDS 119000(1.6.5)에서제시하는유효수평지반가 속도(S)를이용하여산정한다 .4.4.2록볼트(1)지진시록볼트로보강된비탈면의안정해석에서는외적안정성을검토한다 .(2)록볼트로보강된비탈면의지진시안정해석에서고려하는지진하중은파괴토체의자중과지진계수 (Am)를곱한등가지진력으로 고려하며 ,파괴토체의중심에횡방향으로작용시킨다 .',
    '지반계측 KDS111015:2021KDS110000지반설계기준 344.2.2.2 계측기기운용기법(1) 인력에의한계측기기운용과자동화장비에의한운용기법으로크게구분할수있으며, 붕괴및활동의진행특성, 계측대상시설물의중요도 , 피해발생시영향, 경제성, 계측빈도등을고려하여운용기법을선택하여야한다.4.2.2.3 일반적인계측관리의자동화(1) 기록지또는저장장치에계측자료를기록할때까지를자동화하고 , 그후의처리는별도로컴퓨터로실시하는반자동계측관리기법과 , 자료수집ㆍ해석ㆍ그래프화까지를유선ㆍ무선으로온라인화된시스템으로일관하여실시하는전자동계측관리기법및상기의두가지방법을병용하는기법으로구분하며 , 계측대상조건을고려하여운용기법을선정하여야한다.4.2.2.4 피해방지및최소화방법(1) 조기에징후를감지하는것이중요하고 , 모니터링과동시에신속하게그정보를전달ㆍ처리하는것이필요하며계측자료의수집ㆍ처리ㆍ해석까지를일괄하여처리하는자동화기술을사용하는것을고려하여야한다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6014
cosine_accuracy@3 0.7604
cosine_accuracy@5 0.8103
cosine_accuracy@10 0.8655
cosine_precision@1 0.6014
cosine_precision@3 0.2535
cosine_precision@5 0.1621
cosine_precision@10 0.0865
cosine_recall@1 0.6014
cosine_recall@3 0.7604
cosine_recall@5 0.8103
cosine_recall@10 0.8655
cosine_ndcg@10 0.7347
cosine_mrr@10 0.6927
cosine_map@100 0.6986

Training Details

Training Dataset

Unnamed Dataset

  • Size: 41,881 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 10 tokens
    • mean: 24.26 tokens
    • max: 50 tokens
    • min: 15 tokens
    • mean: 237.12 tokens
    • max: 424 tokens
  • Samples:
    sentence_0 sentence_1
    KDS 10 00 00 설계기준은 어느 나라의 표준인가요? KDS 10 00 00설계기준 Korean Design StandardKDS 10 00 00 : 2021공통설계기준.2021년5월12일개정http://www.kcsc.re.kr
    KDS 10 00 00 설계기준은 최근에 언제 개정되었나요? KDS 10 00 00설계기준 Korean Design StandardKDS 10 00 00 : 2021공통설계기준.2021년5월12일개정http://www.kcsc.re.kr
    KDS 10 10 00 설계총칙 문서는 어떤 분야의 설계 기준을 다루고 있나요? 공통설계기준체계KDS 10 10 00 설계총칙 `21.05
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 15
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 15
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Click to expand
Epoch Step Training Loss cosine_ndcg@10
0.0115 15 - 0.5942
0.0229 30 - 0.5969
0.0344 45 - 0.6025
0.0458 60 - 0.6068
0.0573 75 - 0.6108
0.0688 90 - 0.6167
0.0115 15 - 0.6170
0.0229 30 - 0.6176
0.0344 45 - 0.6189
0.0458 60 - 0.6207
0.0573 75 - 0.6225
0.0688 90 - 0.6264
0.0802 105 - 0.6297
0.0917 120 - 0.6315
0.1031 135 - 0.6334
0.1146 150 - 0.6380
0.1261 165 - 0.6426
0.1375 180 - 0.6464
0.1490 195 - 0.6507
0.1604 210 - 0.6531
0.1719 225 - 0.6575
0.1833 240 - 0.6626
0.1948 255 - 0.6646
0.2063 270 - 0.6650
0.2177 285 - 0.6667
0.2292 300 - 0.6672
0.2406 315 - 0.6697
0.2521 330 - 0.6720
0.2636 345 - 0.6745
0.2750 360 - 0.6745
0.2865 375 - 0.6780
0.2979 390 - 0.6796
0.3094 405 - 0.6779
0.3209 420 - 0.6770
0.3323 435 - 0.6803
0.3438 450 - 0.6830
0.3552 465 - 0.6824
0.3667 480 - 0.6846
0.3782 495 - 0.6815
0.3820 500 0.1899 -
0.3896 510 - 0.6831
0.4011 525 - 0.6835
0.4125 540 - 0.6852
0.4240 555 - 0.6878
0.4354 570 - 0.6889
0.4469 585 - 0.6848
0.4584 600 - 0.6852
0.4698 615 - 0.6870
0.4813 630 - 0.6925
0.4927 645 - 0.6954
0.5042 660 - 0.6881
0.5157 675 - 0.6839
0.5271 690 - 0.6849
0.5386 705 - 0.6934
0.5500 720 - 0.6937
0.5615 735 - 0.6937
0.5730 750 - 0.6870
0.5844 765 - 0.6952
0.5959 780 - 0.7008
0.6073 795 - 0.6957
0.6188 810 - 0.6927
0.6303 825 - 0.6899
0.6417 840 - 0.6874
0.6532 855 - 0.6927
0.6646 870 - 0.6991
0.6761 885 - 0.7024
0.6875 900 - 0.7010
0.6990 915 - 0.6943
0.7105 930 - 0.6987
0.7219 945 - 0.7028
0.7334 960 - 0.7004
0.7448 975 - 0.6997
0.7563 990 - 0.6993
0.7639 1000 0.0837 -
0.7678 1005 - 0.6956
0.7792 1020 - 0.6913
0.7907 1035 - 0.6930
0.8021 1050 - 0.6959
0.8136 1065 - 0.6968
0.8251 1080 - 0.7015
0.8365 1095 - 0.6982
0.8480 1110 - 0.7108
0.8594 1125 - 0.7068
0.8709 1140 - 0.7037
0.8824 1155 - 0.7031
0.8938 1170 - 0.6973
0.9053 1185 - 0.6960
0.9167 1200 - 0.6969
0.9282 1215 - 0.6936
0.9396 1230 - 0.6976
0.9511 1245 - 0.7032
0.9626 1260 - 0.7066
0.9740 1275 - 0.7051
0.9855 1290 - 0.7053
0.9969 1305 - 0.7086
1.0 1309 - 0.7075
1.0084 1320 - 0.7063
1.0199 1335 - 0.7079
1.0313 1350 - 0.7112
1.0428 1365 - 0.7075
1.0542 1380 - 0.7008
1.0657 1395 - 0.7020
1.0772 1410 - 0.7047
1.0886 1425 - 0.7051
1.1001 1440 - 0.7084
1.1115 1455 - 0.7112
1.1230 1470 - 0.7109
1.1345 1485 - 0.7037
1.1459 1500 0.0632 0.7033
1.1574 1515 - 0.7158
1.1688 1530 - 0.7076
1.1803 1545 - 0.7115
1.1917 1560 - 0.7109
1.2032 1575 - 0.7062
1.2147 1590 - 0.7047
1.2261 1605 - 0.7033
1.2376 1620 - 0.7055
1.2490 1635 - 0.7149
1.2605 1650 - 0.7155
1.2720 1665 - 0.7042
1.2834 1680 - 0.6972
1.2949 1695 - 0.7071
1.3063 1710 - 0.7107
1.3178 1725 - 0.7113
1.3293 1740 - 0.7115
1.3407 1755 - 0.7022
1.3522 1770 - 0.7073
1.3636 1785 - 0.6989
1.3751 1800 - 0.6995
1.3866 1815 - 0.7021
1.3980 1830 - 0.7092
1.4095 1845 - 0.7099
1.4209 1860 - 0.7040
1.4324 1875 - 0.7041
1.4439 1890 - 0.7111
1.4553 1905 - 0.7103
1.4668 1920 - 0.7030
1.4782 1935 - 0.7058
1.4897 1950 - 0.7045
1.5011 1965 - 0.7026
1.5126 1980 - 0.7142
1.5241 1995 - 0.7087
1.5279 2000 0.0573 -
1.5355 2010 - 0.7085
1.5470 2025 - 0.7108
1.5584 2040 - 0.7049
1.5699 2055 - 0.7013
1.5814 2070 - 0.6987
1.5928 2085 - 0.7116
1.6043 2100 - 0.7049
1.6157 2115 - 0.6990
1.6272 2130 - 0.6954
1.6387 2145 - 0.7007
1.6501 2160 - 0.6951
1.6616 2175 - 0.7014
1.6730 2190 - 0.7083
1.6845 2205 - 0.7091
1.6960 2220 - 0.7105
1.7074 2235 - 0.7054
1.7189 2250 - 0.6979
1.7303 2265 - 0.6966
1.7418 2280 - 0.6981
1.7532 2295 - 0.7050
1.7647 2310 - 0.7051
1.7762 2325 - 0.7086
1.7876 2340 - 0.7045
1.7991 2355 - 0.6971
1.8105 2370 - 0.7021
1.8220 2385 - 0.7037
1.8335 2400 - 0.6947
1.8449 2415 - 0.6948
1.8564 2430 - 0.6956
1.8678 2445 - 0.6959
1.8793 2460 - 0.6884
1.8908 2475 - 0.7084
1.9022 2490 - 0.7088
1.9099 2500 0.0571 -
1.9137 2505 - 0.7027
1.9251 2520 - 0.6953
1.9366 2535 - 0.7057
1.9481 2550 - 0.7064
1.9595 2565 - 0.7097
1.9710 2580 - 0.7077
1.9824 2595 - 0.6990
1.9939 2610 - 0.7011
2.0 2618 - 0.7042
2.0053 2625 - 0.7002
2.0168 2640 - 0.7037
2.0283 2655 - 0.7053
2.0397 2670 - 0.7081
2.0512 2685 - 0.6980
2.0626 2700 - 0.7129
2.0741 2715 - 0.7139
2.0856 2730 - 0.6974
2.0970 2745 - 0.7056
2.1085 2760 - 0.7145
2.1199 2775 - 0.7088
2.1314 2790 - 0.7063
2.1429 2805 - 0.7128
2.1543 2820 - 0.7086
2.1658 2835 - 0.7133
2.1772 2850 - 0.7067
2.1887 2865 - 0.7056
2.2002 2880 - 0.6942
2.2116 2895 - 0.6983
2.2231 2910 - 0.7075
2.2345 2925 - 0.7027
2.2460 2940 - 0.7078
2.2574 2955 - 0.7066
2.2689 2970 - 0.7042
2.2804 2985 - 0.7107
2.2918 3000 0.0421 0.7122
2.3033 3015 - 0.7119
2.3147 3030 - 0.7157
2.3262 3045 - 0.7152
2.3377 3060 - 0.7153
2.3491 3075 - 0.7092
2.3606 3090 - 0.7059
2.3720 3105 - 0.7070
2.3835 3120 - 0.7090
2.3950 3135 - 0.7058
2.4064 3150 - 0.7060
2.4179 3165 - 0.7161
2.4293 3180 - 0.7147
2.4408 3195 - 0.7087
2.4523 3210 - 0.7083
2.4637 3225 - 0.7085
2.4752 3240 - 0.7078
2.4866 3255 - 0.7093
2.4981 3270 - 0.7111
2.5095 3285 - 0.7138
2.5210 3300 - 0.7186
2.5325 3315 - 0.7065
2.5439 3330 - 0.7076
2.5554 3345 - 0.7044
2.5668 3360 - 0.7054
2.5783 3375 - 0.7098
2.5898 3390 - 0.7075
2.6012 3405 - 0.7051
2.6127 3420 - 0.7114
2.6241 3435 - 0.7130
2.6356 3450 - 0.7098
2.6471 3465 - 0.7138
2.6585 3480 - 0.7067
2.6700 3495 - 0.7011
2.6738 3500 0.0387 -
2.6814 3510 - 0.7088
2.6929 3525 - 0.7114
2.7044 3540 - 0.7046
2.7158 3555 - 0.7083
2.7273 3570 - 0.7145
2.7387 3585 - 0.7135
2.7502 3600 - 0.7140
2.7617 3615 - 0.7161
2.7731 3630 - 0.7093
2.7846 3645 - 0.7060
2.7960 3660 - 0.7032
2.8075 3675 - 0.7097
2.8189 3690 - 0.7094
2.8304 3705 - 0.7124
2.8419 3720 - 0.7137
2.8533 3735 - 0.7165
2.8648 3750 - 0.7195
2.8762 3765 - 0.7140
2.8877 3780 - 0.7117
2.8992 3795 - 0.7046
2.9106 3810 - 0.7089
2.9221 3825 - 0.7115
2.9335 3840 - 0.7107
2.9450 3855 - 0.7093
2.9565 3870 - 0.7065
2.9679 3885 - 0.7089
2.9794 3900 - 0.7084
2.9908 3915 - 0.7153
3.0 3927 - 0.7142
3.0023 3930 - 0.7128
3.0138 3945 - 0.7055
3.0252 3960 - 0.7021
3.0367 3975 - 0.7030
3.0481 3990 - 0.7064
3.0558 4000 0.0402 -
3.0596 4005 - 0.7115
3.0710 4020 - 0.7108
3.0825 4035 - 0.7114
3.0940 4050 - 0.7112
3.1054 4065 - 0.7050
3.1169 4080 - 0.7099
3.1283 4095 - 0.7090
3.1398 4110 - 0.7036
3.1513 4125 - 0.7063
3.1627 4140 - 0.7069
3.1742 4155 - 0.7085
3.1856 4170 - 0.7080
3.1971 4185 - 0.7123
3.2086 4200 - 0.7091
3.2200 4215 - 0.7017
3.2315 4230 - 0.7062
3.2429 4245 - 0.7166
3.2544 4260 - 0.7156
3.2659 4275 - 0.7132
3.2773 4290 - 0.7121
3.2888 4305 - 0.7126
3.3002 4320 - 0.7089
3.3117 4335 - 0.7097
3.3231 4350 - 0.7124
3.3346 4365 - 0.7084
3.3461 4380 - 0.7076
3.3575 4395 - 0.7115
3.3690 4410 - 0.7103
3.3804 4425 - 0.7162
3.3919 4440 - 0.7190
3.4034 4455 - 0.7231
3.4148 4470 - 0.7247
3.4263 4485 - 0.7193
3.4377 4500 0.0312 0.7155
3.4492 4515 - 0.7172
3.4607 4530 - 0.7165
3.4721 4545 - 0.7133
3.4836 4560 - 0.7122
3.4950 4575 - 0.7147
3.5065 4590 - 0.7086
3.5180 4605 - 0.7102
3.5294 4620 - 0.7145
3.5409 4635 - 0.7151
3.5523 4650 - 0.7159
3.5638 4665 - 0.7111
3.5752 4680 - 0.7177
3.5867 4695 - 0.7188
3.5982 4710 - 0.7112
3.6096 4725 - 0.7117
3.6211 4740 - 0.7045
3.6325 4755 - 0.7083
3.6440 4770 - 0.7081
3.6555 4785 - 0.7041
3.6669 4800 - 0.7076
3.6784 4815 - 0.7099
3.6898 4830 - 0.7081
3.7013 4845 - 0.7084
3.7128 4860 - 0.7098
3.7242 4875 - 0.7111
3.7357 4890 - 0.7121
3.7471 4905 - 0.7122
3.7586 4920 - 0.7140
3.7701 4935 - 0.7193
3.7815 4950 - 0.7163
3.7930 4965 - 0.7115
3.8044 4980 - 0.7098
3.8159 4995 - 0.7099
3.8197 5000 0.0296 -
3.8273 5010 - 0.7140
3.8388 5025 - 0.7104
3.8503 5040 - 0.7102
3.8617 5055 - 0.7136
3.8732 5070 - 0.7165
3.8846 5085 - 0.7202
3.8961 5100 - 0.7236
3.9076 5115 - 0.7223
3.9190 5130 - 0.7208
3.9305 5145 - 0.7137
3.9419 5160 - 0.7153
3.9534 5175 - 0.7193
3.9649 5190 - 0.7209
3.9763 5205 - 0.7215
3.9878 5220 - 0.7195
3.9992 5235 - 0.7216
4.0 5236 - 0.7211
4.0107 5250 - 0.7189
4.0222 5265 - 0.7158
4.0336 5280 - 0.7164
4.0451 5295 - 0.7145
4.0565 5310 - 0.7132
4.0680 5325 - 0.7167
4.0794 5340 - 0.7122
4.0909 5355 - 0.7161
4.1024 5370 - 0.7155
4.1138 5385 - 0.7080
4.1253 5400 - 0.6994
4.1367 5415 - 0.7065
4.1482 5430 - 0.7096
4.1597 5445 - 0.7142
4.1711 5460 - 0.7203
4.1826 5475 - 0.7210
4.1940 5490 - 0.7127
4.2017 5500 0.0258 -
4.2055 5505 - 0.7059
4.2170 5520 - 0.7090
4.2284 5535 - 0.7094
4.2399 5550 - 0.7126
4.2513 5565 - 0.7100
4.2628 5580 - 0.7181
4.2743 5595 - 0.7236
4.2857 5610 - 0.7214
4.2972 5625 - 0.7133
4.3086 5640 - 0.7182
4.3201 5655 - 0.7175
4.3316 5670 - 0.7167
4.3430 5685 - 0.7156
4.3545 5700 - 0.7159
4.3659 5715 - 0.7191
4.3774 5730 - 0.7121
4.3888 5745 - 0.7075
4.4003 5760 - 0.7054
4.4118 5775 - 0.7122
4.4232 5790 - 0.7159
4.4347 5805 - 0.7132
4.4461 5820 - 0.7145
4.4576 5835 - 0.7158
4.4691 5850 - 0.7162
4.4805 5865 - 0.7189
4.4920 5880 - 0.7171
4.5034 5895 - 0.7170
4.5149 5910 - 0.7151
4.5264 5925 - 0.7155
4.5378 5940 - 0.7163
4.5493 5955 - 0.7182
4.5607 5970 - 0.7240
4.5722 5985 - 0.7203
4.5837 6000 0.0274 0.7194
4.5951 6015 - 0.7241
4.6066 6030 - 0.7220
4.6180 6045 - 0.7220
4.6295 6060 - 0.7168
4.6409 6075 - 0.7168
4.6524 6090 - 0.7161
4.6639 6105 - 0.7182
4.6753 6120 - 0.7144
4.6868 6135 - 0.7143
4.6982 6150 - 0.7151
4.7097 6165 - 0.7179
4.7212 6180 - 0.7196
4.7326 6195 - 0.7174
4.7441 6210 - 0.7143
4.7555 6225 - 0.7151
4.7670 6240 - 0.7156
4.7785 6255 - 0.7185
4.7899 6270 - 0.7231
4.8014 6285 - 0.7238
4.8128 6300 - 0.7260
4.8243 6315 - 0.7239
4.8358 6330 - 0.7233
4.8472 6345 - 0.7207
4.8587 6360 - 0.7230
4.8701 6375 - 0.7234
4.8816 6390 - 0.7237
4.8930 6405 - 0.7231
4.9045 6420 - 0.7226
4.9160 6435 - 0.7196
4.9274 6450 - 0.7181
4.9389 6465 - 0.7179
4.9503 6480 - 0.7218
4.9618 6495 - 0.7253
4.9656 6500 0.0264 -
4.9733 6510 - 0.7213
4.9847 6525 - 0.7162
4.9962 6540 - 0.7166
5.0 6545 - 0.7187
5.0076 6555 - 0.7193
5.0191 6570 - 0.7145
5.0306 6585 - 0.7193
5.0420 6600 - 0.7189
5.0535 6615 - 0.7170
5.0649 6630 - 0.7150
5.0764 6645 - 0.7140
5.0879 6660 - 0.7184
5.0993 6675 - 0.7134
5.1108 6690 - 0.7178
5.1222 6705 - 0.7226
5.1337 6720 - 0.7187
5.1451 6735 - 0.7170
5.1566 6750 - 0.7152
5.1681 6765 - 0.7147
5.1795 6780 - 0.7111
5.1910 6795 - 0.7152
5.2024 6810 - 0.7197
5.2139 6825 - 0.7124
5.2254 6840 - 0.7152
5.2368 6855 - 0.7169
5.2483 6870 - 0.7166
5.2597 6885 - 0.7163
5.2712 6900 - 0.7184
5.2827 6915 - 0.7161
5.2941 6930 - 0.7176
5.3056 6945 - 0.7135
5.3170 6960 - 0.7130
5.3285 6975 - 0.7216
5.3400 6990 - 0.7220
5.3476 7000 0.0206 -
5.3514 7005 - 0.7216
5.3629 7020 - 0.7167
5.3743 7035 - 0.7161
5.3858 7050 - 0.7132
5.3972 7065 - 0.7128
5.4087 7080 - 0.7199
5.4202 7095 - 0.7189
5.4316 7110 - 0.7172
5.4431 7125 - 0.7120
5.4545 7140 - 0.7117
5.4660 7155 - 0.7140
5.4775 7170 - 0.7136
5.4889 7185 - 0.7204
5.5004 7200 - 0.7222
5.5118 7215 - 0.7140
5.5233 7230 - 0.7110
5.5348 7245 - 0.7218
5.5462 7260 - 0.7213
5.5577 7275 - 0.7173
5.5691 7290 - 0.7219
5.5806 7305 - 0.7191
5.5921 7320 - 0.7180
5.6035 7335 - 0.7166
5.6150 7350 - 0.7159
5.6264 7365 - 0.7197
5.6379 7380 - 0.7206
5.6494 7395 - 0.7196
5.6608 7410 - 0.7191
5.6723 7425 - 0.7246
5.6837 7440 - 0.7265
5.6952 7455 - 0.7215
5.7066 7470 - 0.7125
5.7181 7485 - 0.7123
5.7296 7500 0.0218 0.7204
5.7410 7515 - 0.7270
5.7525 7530 - 0.7260
5.7639 7545 - 0.7245
5.7754 7560 - 0.7262
5.7869 7575 - 0.7244
5.7983 7590 - 0.7220
5.8098 7605 - 0.7215
5.8212 7620 - 0.7244
5.8327 7635 - 0.7280
5.8442 7650 - 0.7285
5.8556 7665 - 0.7212
5.8671 7680 - 0.7215
5.8785 7695 - 0.7244
5.8900 7710 - 0.7210
5.9015 7725 - 0.7205
5.9129 7740 - 0.7201
5.9244 7755 - 0.7171
5.9358 7770 - 0.7145
5.9473 7785 - 0.7158
5.9587 7800 - 0.7192
5.9702 7815 - 0.7223
5.9817 7830 - 0.7246
5.9931 7845 - 0.7212
6.0 7854 - 0.7168
6.0046 7860 - 0.7166
6.0160 7875 - 0.7193
6.0275 7890 - 0.7179
6.0390 7905 - 0.7153
6.0504 7920 - 0.7223
6.0619 7935 - 0.7316
6.0733 7950 - 0.7319
6.0848 7965 - 0.7268
6.0963 7980 - 0.7233
6.1077 7995 - 0.7232
6.1115 8000 0.022 -
6.1192 8010 - 0.7223
6.1306 8025 - 0.7201
6.1421 8040 - 0.7238
6.1536 8055 - 0.7221
6.1650 8070 - 0.7215
6.1765 8085 - 0.7196
6.1879 8100 - 0.7271
6.1994 8115 - 0.7270
6.2108 8130 - 0.7287
6.2223 8145 - 0.7279
6.2338 8160 - 0.7253
6.2452 8175 - 0.7271
6.2567 8190 - 0.7290
6.2681 8205 - 0.7304
6.2796 8220 - 0.7271
6.2911 8235 - 0.7245
6.3025 8250 - 0.7269
6.3140 8265 - 0.7266
6.3254 8280 - 0.7248
6.3369 8295 - 0.7240
6.3484 8310 - 0.7252
6.3598 8325 - 0.7264
6.3713 8340 - 0.7253
6.3827 8355 - 0.7259
6.3942 8370 - 0.7252
6.4057 8385 - 0.7200
6.4171 8400 - 0.7228
6.4286 8415 - 0.7221
6.4400 8430 - 0.7213
6.4515 8445 - 0.7185
6.4629 8460 - 0.7204
6.4744 8475 - 0.7235
6.4859 8490 - 0.7268
6.4935 8500 0.0201 -
6.4973 8505 - 0.7282
6.5088 8520 - 0.7249
6.5202 8535 - 0.7192
6.5317 8550 - 0.7146
6.5432 8565 - 0.7171
6.5546 8580 - 0.7232
6.5661 8595 - 0.7281
6.5775 8610 - 0.7302
6.5890 8625 - 0.7237
6.6005 8640 - 0.7232
6.6119 8655 - 0.7275
6.6234 8670 - 0.7281
6.6348 8685 - 0.7226
6.6463 8700 - 0.7244
6.6578 8715 - 0.7275
6.6692 8730 - 0.7300
6.6807 8745 - 0.7242
6.6921 8760 - 0.7270
6.7036 8775 - 0.7286
6.7150 8790 - 0.7280
6.7265 8805 - 0.7231
6.7380 8820 - 0.7171
6.7494 8835 - 0.7189
6.7609 8850 - 0.7262
6.7723 8865 - 0.7261
6.7838 8880 - 0.7233
6.7953 8895 - 0.7297
6.8067 8910 - 0.7329
6.8182 8925 - 0.7291
6.8296 8940 - 0.7287
6.8411 8955 - 0.7300
6.8526 8970 - 0.7276
6.8640 8985 - 0.7261
6.8755 9000 0.0217 0.7256
6.8869 9015 - 0.7236
6.8984 9030 - 0.7222
6.9099 9045 - 0.7215
6.9213 9060 - 0.7229
6.9328 9075 - 0.7269
6.9442 9090 - 0.7286
6.9557 9105 - 0.7206
6.9672 9120 - 0.7209
6.9786 9135 - 0.7220
6.9901 9150 - 0.7243
7.0 9163 - 0.7269
7.0015 9165 - 0.7277
7.0130 9180 - 0.7287
7.0244 9195 - 0.7275
7.0359 9210 - 0.7252
7.0474 9225 - 0.7243
7.0588 9240 - 0.7246
7.0703 9255 - 0.7245
7.0817 9270 - 0.7223
7.0932 9285 - 0.7198
7.1047 9300 - 0.7212
7.1161 9315 - 0.7243
7.1276 9330 - 0.7230
7.1390 9345 - 0.7197
7.1505 9360 - 0.7201
7.1620 9375 - 0.7197
7.1734 9390 - 0.7212
7.1849 9405 - 0.7213
7.1963 9420 - 0.7239
7.2078 9435 - 0.7220
7.2193 9450 - 0.7206
7.2307 9465 - 0.7213
7.2422 9480 - 0.7207
7.2536 9495 - 0.7268
7.2574 9500 0.0186 -
7.2651 9510 - 0.7265
7.2765 9525 - 0.7203
7.2880 9540 - 0.7193
7.2995 9555 - 0.7185
7.3109 9570 - 0.7228
7.3224 9585 - 0.7270
7.3338 9600 - 0.7247
7.3453 9615 - 0.7204
7.3568 9630 - 0.7202
7.3682 9645 - 0.7211
7.3797 9660 - 0.7243
7.3911 9675 - 0.7270
7.4026 9690 - 0.7298
7.4141 9705 - 0.7315
7.4255 9720 - 0.7339
7.4370 9735 - 0.7325
7.4484 9750 - 0.7289
7.4599 9765 - 0.7264
7.4714 9780 - 0.7257
7.4828 9795 - 0.7242
7.4943 9810 - 0.7265
7.5057 9825 - 0.7276
7.5172 9840 - 0.7311
7.5286 9855 - 0.7296
7.5401 9870 - 0.7259
7.5516 9885 - 0.7291
7.5630 9900 - 0.7298
7.5745 9915 - 0.7252
7.5859 9930 - 0.7302
7.5974 9945 - 0.7289
7.6089 9960 - 0.7288
7.6203 9975 - 0.7282
7.6318 9990 - 0.7230
7.6394 10000 0.0201 -
7.6432 10005 - 0.7212
7.6547 10020 - 0.7224
7.6662 10035 - 0.7221
7.6776 10050 - 0.7217
7.6891 10065 - 0.7245
7.7005 10080 - 0.7268
7.7120 10095 - 0.7280
7.7235 10110 - 0.7247
7.7349 10125 - 0.7250
7.7464 10140 - 0.7250
7.7578 10155 - 0.7218
7.7693 10170 - 0.7202
7.7807 10185 - 0.7226
7.7922 10200 - 0.7244
7.8037 10215 - 0.7267
7.8151 10230 - 0.7221
7.8266 10245 - 0.7225
7.8380 10260 - 0.7223
7.8495 10275 - 0.7218
7.8610 10290 - 0.7228
7.8724 10305 - 0.7229
7.8839 10320 - 0.7198
7.8953 10335 - 0.7226
7.9068 10350 - 0.7235
7.9183 10365 - 0.7197
7.9297 10380 - 0.7136
7.9412 10395 - 0.7095
7.9526 10410 - 0.7203
7.9641 10425 - 0.7255
7.9756 10440 - 0.7244
7.9870 10455 - 0.7220
7.9985 10470 - 0.7232
8.0 10472 - 0.7232
8.0099 10485 - 0.7217
8.0214 10500 0.0184 0.7204
8.0328 10515 - 0.7234
8.0443 10530 - 0.7291
8.0558 10545 - 0.7322
8.0672 10560 - 0.7327
8.0787 10575 - 0.7316
8.0901 10590 - 0.7286
8.1016 10605 - 0.7257
8.1131 10620 - 0.7206
8.1245 10635 - 0.7199
8.1360 10650 - 0.7228
8.1474 10665 - 0.7254
8.1589 10680 - 0.7211
8.1704 10695 - 0.7202
8.1818 10710 - 0.7197
8.1933 10725 - 0.7206
8.2047 10740 - 0.7220
8.2162 10755 - 0.7244
8.2277 10770 - 0.7241
8.2391 10785 - 0.7248
8.2506 10800 - 0.7231
8.2620 10815 - 0.7220
8.2735 10830 - 0.7198
8.2850 10845 - 0.7191
8.2964 10860 - 0.7170
8.3079 10875 - 0.7228
8.3193 10890 - 0.7273
8.3308 10905 - 0.7260
8.3422 10920 - 0.7203
8.3537 10935 - 0.7232
8.3652 10950 - 0.7232
8.3766 10965 - 0.7231
8.3881 10980 - 0.7232
8.3995 10995 - 0.7233
8.4034 11000 0.0178 -
8.4110 11010 - 0.7233
8.4225 11025 - 0.7249
8.4339 11040 - 0.7214
8.4454 11055 - 0.7195
8.4568 11070 - 0.7229
8.4683 11085 - 0.7260
8.4798 11100 - 0.7253
8.4912 11115 - 0.7222
8.5027 11130 - 0.7230
8.5141 11145 - 0.7258
8.5256 11160 - 0.7263
8.5371 11175 - 0.7248
8.5485 11190 - 0.7230
8.5600 11205 - 0.7226
8.5714 11220 - 0.7289
8.5829 11235 - 0.7287
8.5943 11250 - 0.7284
8.6058 11265 - 0.7279
8.6173 11280 - 0.7294
8.6287 11295 - 0.7331
8.6402 11310 - 0.7362
8.6516 11325 - 0.7341
8.6631 11340 - 0.7291
8.6746 11355 - 0.7228
8.6860 11370 - 0.7225
8.6975 11385 - 0.7276
8.7089 11400 - 0.7323
8.7204 11415 - 0.7324
8.7319 11430 - 0.7281
8.7433 11445 - 0.7258
8.7548 11460 - 0.7285
8.7662 11475 - 0.7304
8.7777 11490 - 0.7275
8.7853 11500 0.0161 -
8.7892 11505 - 0.7268
8.8006 11520 - 0.7223
8.8121 11535 - 0.7227
8.8235 11550 - 0.7246
8.8350 11565 - 0.7261
8.8464 11580 - 0.7256
8.8579 11595 - 0.7268
8.8694 11610 - 0.7285
8.8808 11625 - 0.7308
8.8923 11640 - 0.7294
8.9037 11655 - 0.7274
8.9152 11670 - 0.7258
8.9267 11685 - 0.7264
8.9381 11700 - 0.7305
8.9496 11715 - 0.7303
8.9610 11730 - 0.7299
8.9725 11745 - 0.7297
8.9840 11760 - 0.7276
8.9954 11775 - 0.7229
9.0 11781 - 0.7220
9.0069 11790 - 0.7220
9.0183 11805 - 0.7206
9.0298 11820 - 0.7203
9.0413 11835 - 0.7258
9.0527 11850 - 0.7287
9.0642 11865 - 0.7307
9.0756 11880 - 0.7291
9.0871 11895 - 0.7267
9.0985 11910 - 0.7258
9.1100 11925 - 0.7251
9.1215 11940 - 0.7234
9.1329 11955 - 0.7265
9.1444 11970 - 0.7276
9.1558 11985 - 0.7313
9.1673 12000 0.0172 0.7288
9.1788 12015 - 0.7262
9.1902 12030 - 0.7232
9.2017 12045 - 0.7224
9.2131 12060 - 0.7236
9.2246 12075 - 0.7237
9.2361 12090 - 0.7249
9.2475 12105 - 0.7245
9.2590 12120 - 0.7248
9.2704 12135 - 0.7256
9.2819 12150 - 0.7254
9.2934 12165 - 0.7229
9.3048 12180 - 0.7246
9.3163 12195 - 0.7247
9.3277 12210 - 0.7266
9.3392 12225 - 0.7249
9.3506 12240 - 0.7224
9.3621 12255 - 0.7218
9.3736 12270 - 0.7236
9.3850 12285 - 0.7221
9.3965 12300 - 0.7200
9.4079 12315 - 0.7180
9.4194 12330 - 0.7175
9.4309 12345 - 0.7192
9.4423 12360 - 0.7222
9.4538 12375 - 0.7225
9.4652 12390 - 0.7241
9.4767 12405 - 0.7227
9.4882 12420 - 0.7213
9.4996 12435 - 0.7218
9.5111 12450 - 0.7217
9.5225 12465 - 0.7222
9.5340 12480 - 0.7217
9.5455 12495 - 0.7230
9.5493 12500 0.0147 -
9.5569 12510 - 0.7262
9.5684 12525 - 0.7306
9.5798 12540 - 0.7313
9.5913 12555 - 0.7303
9.6028 12570 - 0.7296
9.6142 12585 - 0.7278
9.6257 12600 - 0.7268
9.6371 12615 - 0.7276
9.6486 12630 - 0.7298
9.6600 12645 - 0.7282
9.6715 12660 - 0.7252
9.6830 12675 - 0.7263
9.6944 12690 - 0.7247
9.7059 12705 - 0.7255
9.7173 12720 - 0.7291
9.7288 12735 - 0.7309
9.7403 12750 - 0.7303
9.7517 12765 - 0.7271
9.7632 12780 - 0.7251
9.7746 12795 - 0.7248
9.7861 12810 - 0.7240
9.7976 12825 - 0.7231
9.8090 12840 - 0.7239
9.8205 12855 - 0.7225
9.8319 12870 - 0.7256
9.8434 12885 - 0.7249
9.8549 12900 - 0.7254
9.8663 12915 - 0.7301
9.8778 12930 - 0.7299
9.8892 12945 - 0.7317
9.9007 12960 - 0.7298
9.9121 12975 - 0.7288
9.9236 12990 - 0.7294
9.9312 13000 0.016 -
9.9351 13005 - 0.7273
9.9465 13020 - 0.7242
9.9580 13035 - 0.7234
9.9694 13050 - 0.7258
9.9809 13065 - 0.7298
9.9924 13080 - 0.7323
10.0 13090 - 0.7326
10.0038 13095 - 0.7322
10.0153 13110 - 0.7302
10.0267 13125 - 0.7300
10.0382 13140 - 0.7327
10.0497 13155 - 0.7356
10.0611 13170 - 0.7364
10.0726 13185 - 0.7323
10.0840 13200 - 0.7332
10.0955 13215 - 0.7333
10.1070 13230 - 0.7339
10.1184 13245 - 0.7331
10.1299 13260 - 0.7310
10.1413 13275 - 0.7281
10.1528 13290 - 0.7276
10.1642 13305 - 0.7301
10.1757 13320 - 0.7305
10.1872 13335 - 0.7316
10.1986 13350 - 0.7342
10.2101 13365 - 0.7332
10.2215 13380 - 0.7284
10.2330 13395 - 0.7265
10.2445 13410 - 0.7258
10.2559 13425 - 0.7297
10.2674 13440 - 0.7312
10.2788 13455 - 0.7324
10.2903 13470 - 0.7328
10.3018 13485 - 0.7302
10.3132 13500 0.0155 0.7267
10.3247 13515 - 0.7249
10.3361 13530 - 0.7230
10.3476 13545 - 0.7272
10.3591 13560 - 0.7291
10.3705 13575 - 0.7320
10.3820 13590 - 0.7326
10.3934 13605 - 0.7304
10.4049 13620 - 0.7308
10.4163 13635 - 0.7328
10.4278 13650 - 0.7331
10.4393 13665 - 0.7318
10.4507 13680 - 0.7306
10.4622 13695 - 0.7325
10.4736 13710 - 0.7323
10.4851 13725 - 0.7331
10.4966 13740 - 0.7281
10.5080 13755 - 0.7247
10.5195 13770 - 0.7269
10.5309 13785 - 0.7268
10.5424 13800 - 0.7272
10.5539 13815 - 0.7272
10.5653 13830 - 0.7235
10.5768 13845 - 0.7242
10.5882 13860 - 0.7244
10.5997 13875 - 0.7249
10.6112 13890 - 0.7238
10.6226 13905 - 0.7240
10.6341 13920 - 0.7237
10.6455 13935 - 0.7219
10.6570 13950 - 0.7237
10.6684 13965 - 0.7265
10.6799 13980 - 0.7273
10.6914 13995 - 0.7265
10.6952 14000 0.0161 -
10.7028 14010 - 0.7242
10.7143 14025 - 0.7255
10.7257 14040 - 0.7256
10.7372 14055 - 0.7230
10.7487 14070 - 0.7253
10.7601 14085 - 0.7278
10.7716 14100 - 0.7276
10.7830 14115 - 0.7263
10.7945 14130 - 0.7246
10.8060 14145 - 0.7260
10.8174 14160 - 0.7239
10.8289 14175 - 0.7253
10.8403 14190 - 0.7258
10.8518 14205 - 0.7240
10.8633 14220 - 0.7203
10.8747 14235 - 0.7205
10.8862 14250 - 0.7227
10.8976 14265 - 0.7231
10.9091 14280 - 0.7248
10.9206 14295 - 0.7259
10.9320 14310 - 0.7260
10.9435 14325 - 0.7271
10.9549 14340 - 0.7269
10.9664 14355 - 0.7272
10.9778 14370 - 0.7260
10.9893 14385 - 0.7273
11.0 14399 - 0.7261
11.0008 14400 - 0.7256
11.0122 14415 - 0.7255
11.0237 14430 - 0.7250
11.0351 14445 - 0.7245
11.0466 14460 - 0.7227
11.0581 14475 - 0.7239
11.0695 14490 - 0.7249
11.0772 14500 0.0152 -
11.0810 14505 - 0.7269
11.0924 14520 - 0.7313
11.1039 14535 - 0.7309
11.1154 14550 - 0.7298
11.1268 14565 - 0.7292
11.1383 14580 - 0.7285
11.1497 14595 - 0.7291
11.1612 14610 - 0.7272
11.1727 14625 - 0.7270
11.1841 14640 - 0.7279
11.1956 14655 - 0.7272
11.2070 14670 - 0.7248
11.2185 14685 - 0.7225
11.2299 14700 - 0.7218
11.2414 14715 - 0.7241
11.2529 14730 - 0.7252
11.2643 14745 - 0.7266
11.2758 14760 - 0.7255
11.2872 14775 - 0.7250
11.2987 14790 - 0.7263
11.3102 14805 - 0.7262
11.3216 14820 - 0.7266
11.3331 14835 - 0.7258
11.3445 14850 - 0.7275
11.3560 14865 - 0.7256
11.3675 14880 - 0.7232
11.3789 14895 - 0.7229
11.3904 14910 - 0.7249
11.4018 14925 - 0.7272
11.4133 14940 - 0.7291
11.4248 14955 - 0.7284
11.4362 14970 - 0.7289
11.4477 14985 - 0.7291
11.4591 15000 0.0136 0.7295
11.4706 15015 - 0.7289
11.4820 15030 - 0.7269
11.4935 15045 - 0.7261
11.5050 15060 - 0.7273
11.5164 15075 - 0.7293
11.5279 15090 - 0.7293
11.5393 15105 - 0.7297
11.5508 15120 - 0.7299
11.5623 15135 - 0.7303
11.5737 15150 - 0.7297
11.5852 15165 - 0.7271
11.5966 15180 - 0.7259
11.6081 15195 - 0.7263
11.6196 15210 - 0.7275
11.6310 15225 - 0.7308
11.6425 15240 - 0.7294
11.6539 15255 - 0.7277
11.6654 15270 - 0.7284
11.6769 15285 - 0.7279
11.6883 15300 - 0.7269
11.6998 15315 - 0.7277
11.7112 15330 - 0.7264
11.7227 15345 - 0.7281
11.7341 15360 - 0.7295
11.7456 15375 - 0.7298
11.7571 15390 - 0.7306
11.7685 15405 - 0.7302
11.7800 15420 - 0.7295
11.7914 15435 - 0.7294
11.8029 15450 - 0.7297
11.8144 15465 - 0.7291
11.8258 15480 - 0.7306
11.8373 15495 - 0.7280
11.8411 15500 0.0146 -
11.8487 15510 - 0.7273
11.8602 15525 - 0.7310
11.8717 15540 - 0.7304
11.8831 15555 - 0.7313
11.8946 15570 - 0.7324
11.9060 15585 - 0.7321
11.9175 15600 - 0.7309
11.9290 15615 - 0.7313
11.9404 15630 - 0.7330
11.9519 15645 - 0.7337
11.9633 15660 - 0.7334
11.9748 15675 - 0.7327
11.9862 15690 - 0.7305
11.9977 15705 - 0.7295
12.0 15708 - 0.7298
12.0092 15720 - 0.7308
12.0206 15735 - 0.7314
12.0321 15750 - 0.7319
12.0435 15765 - 0.7335
12.0550 15780 - 0.7336
12.0665 15795 - 0.7328
12.0779 15810 - 0.7322
12.0894 15825 - 0.7336
12.1008 15840 - 0.7348
12.1123 15855 - 0.7360
12.1238 15870 - 0.7349
12.1352 15885 - 0.7345
12.1467 15900 - 0.7339
12.1581 15915 - 0.7338
12.1696 15930 - 0.7329
12.1811 15945 - 0.7326
12.1925 15960 - 0.7305
12.2040 15975 - 0.7305
12.2154 15990 - 0.7303
12.2231 16000 0.0141 -
12.2269 16005 - 0.7315
12.2383 16020 - 0.7316
12.2498 16035 - 0.7318
12.2613 16050 - 0.7322
12.2727 16065 - 0.7318
12.2842 16080 - 0.7301
12.2956 16095 - 0.7296
12.3071 16110 - 0.7308
12.3186 16125 - 0.7309
12.3300 16140 - 0.7303
12.3415 16155 - 0.7287
12.3529 16170 - 0.7310
12.3644 16185 - 0.7317
12.3759 16200 - 0.7329
12.3873 16215 - 0.7326
12.3988 16230 - 0.7320
12.4102 16245 - 0.7322
12.4217 16260 - 0.7315
12.4332 16275 - 0.7311
12.4446 16290 - 0.7310
12.4561 16305 - 0.7306
12.4675 16320 - 0.7305
12.4790 16335 - 0.7310
12.4905 16350 - 0.7303
12.5019 16365 - 0.7312
12.5134 16380 - 0.7323
12.5248 16395 - 0.7330
12.5363 16410 - 0.7329
12.5477 16425 - 0.7327
12.5592 16440 - 0.7345
12.5707 16455 - 0.7347
12.5821 16470 - 0.7331
12.5936 16485 - 0.7324
12.6050 16500 0.0137 0.7344
12.6165 16515 - 0.7346
12.6280 16530 - 0.7337
12.6394 16545 - 0.7327
12.6509 16560 - 0.7337
12.6623 16575 - 0.7335
12.6738 16590 - 0.7337
12.6853 16605 - 0.7331
12.6967 16620 - 0.7320
12.7082 16635 - 0.7325
12.7196 16650 - 0.7335
12.7311 16665 - 0.7331
12.7426 16680 - 0.7324
12.7540 16695 - 0.7316
12.7655 16710 - 0.7329
12.7769 16725 - 0.7344
12.7884 16740 - 0.7352
12.7998 16755 - 0.7361
12.8113 16770 - 0.7362
12.8228 16785 - 0.7354
12.8342 16800 - 0.7358
12.8457 16815 - 0.7346
12.8571 16830 - 0.7340
12.8686 16845 - 0.7340
12.8801 16860 - 0.7334
12.8915 16875 - 0.7322
12.9030 16890 - 0.7320
12.9144 16905 - 0.7313
12.9259 16920 - 0.7315
12.9374 16935 - 0.7318
12.9488 16950 - 0.7315
12.9603 16965 - 0.7317
12.9717 16980 - 0.7331
12.9832 16995 - 0.7324
12.9870 17000 0.0133 -
12.9947 17010 - 0.7333
13.0 17017 - 0.7323
13.0061 17025 - 0.7310
13.0176 17040 - 0.7301
13.0290 17055 - 0.7301
13.0405 17070 - 0.7298
13.0519 17085 - 0.7312
13.0634 17100 - 0.7318
13.0749 17115 - 0.7331
13.0863 17130 - 0.7337
13.0978 17145 - 0.7346
13.1092 17160 - 0.7337
13.1207 17175 - 0.7333
13.1322 17190 - 0.7333
13.1436 17205 - 0.7338
13.1551 17220 - 0.7334
13.1665 17235 - 0.7341
13.1780 17250 - 0.7347
13.1895 17265 - 0.7329
13.2009 17280 - 0.7332
13.2124 17295 - 0.7336
13.2238 17310 - 0.7331
13.2353 17325 - 0.7335
13.2468 17340 - 0.7330
13.2582 17355 - 0.7316
13.2697 17370 - 0.7311
13.2811 17385 - 0.7323
13.2926 17400 - 0.7331
13.3040 17415 - 0.7331
13.3155 17430 - 0.7334
13.3270 17445 - 0.7334
13.3384 17460 - 0.7343
13.3499 17475 - 0.7335
13.3613 17490 - 0.7328
13.3690 17500 0.014 -
13.3728 17505 - 0.7334
13.3843 17520 - 0.7338
13.3957 17535 - 0.7336
13.4072 17550 - 0.7336
13.4186 17565 - 0.7334
13.4301 17580 - 0.7331
13.4416 17595 - 0.7334
13.4530 17610 - 0.7344
13.4645 17625 - 0.7353
13.4759 17640 - 0.7358
13.4874 17655 - 0.7354
13.4989 17670 - 0.7374
13.5103 17685 - 0.7370
13.5218 17700 - 0.7377
13.5332 17715 - 0.7374
13.5447 17730 - 0.7367
13.5561 17745 - 0.7353
13.5676 17760 - 0.7359
13.5791 17775 - 0.7354
13.5905 17790 - 0.7340
13.6020 17805 - 0.7345
13.6134 17820 - 0.7349
13.6249 17835 - 0.7356
13.6364 17850 - 0.7357
13.6478 17865 - 0.7348
13.6593 17880 - 0.7351
13.6707 17895 - 0.7346
13.6822 17910 - 0.7353
13.6937 17925 - 0.7347
13.7051 17940 - 0.7347
13.7166 17955 - 0.7346
13.7280 17970 - 0.7337
13.7395 17985 - 0.7342
13.7510 18000 0.0128 0.7345
13.7624 18015 - 0.7341
13.7739 18030 - 0.7341
13.7853 18045 - 0.7334
13.7968 18060 - 0.7332
13.8083 18075 - 0.7332
13.8197 18090 - 0.7333
13.8312 18105 - 0.7324
13.8426 18120 - 0.7322
13.8541 18135 - 0.7325
13.8655 18150 - 0.7325
13.8770 18165 - 0.7332
13.8885 18180 - 0.7333
13.8999 18195 - 0.7339
13.9114 18210 - 0.7338
13.9228 18225 - 0.7342
13.9343 18240 - 0.7349
13.9458 18255 - 0.7349
13.9572 18270 - 0.7355
13.9687 18285 - 0.7366
13.9801 18300 - 0.7365
13.9916 18315 - 0.7372
14.0 18326 - 0.7370
14.0031 18330 - 0.7372
14.0145 18345 - 0.7372
14.0260 18360 - 0.7380
14.0374 18375 - 0.7379
14.0489 18390 - 0.7366
14.0604 18405 - 0.7362
14.0718 18420 - 0.7363
14.0833 18435 - 0.7361
14.0947 18450 - 0.7360
14.1062 18465 - 0.7360
14.1176 18480 - 0.7365
14.1291 18495 - 0.7361
14.1329 18500 0.0132 -
14.1406 18510 - 0.7360
14.1520 18525 - 0.7360
14.1635 18540 - 0.7360
14.1749 18555 - 0.7352
14.1864 18570 - 0.7347
14.1979 18585 - 0.7349
14.2093 18600 - 0.7345
14.2208 18615 - 0.7347
14.2322 18630 - 0.7345
14.2437 18645 - 0.7348
14.2552 18660 - 0.7345
14.2666 18675 - 0.7342
14.2781 18690 - 0.7342
14.2895 18705 - 0.7339
14.3010 18720 - 0.7342
14.3125 18735 - 0.7350
14.3239 18750 - 0.7351
14.3354 18765 - 0.7348
14.3468 18780 - 0.7349
14.3583 18795 - 0.7347
14.3697 18810 - 0.7343
14.3812 18825 - 0.7344
14.3927 18840 - 0.7348
14.4041 18855 - 0.7348
14.4156 18870 - 0.7342
14.4270 18885 - 0.7343
14.4385 18900 - 0.7345
14.4500 18915 - 0.7347
14.4614 18930 - 0.7348
14.4729 18945 - 0.7351
14.4843 18960 - 0.7348
14.4958 18975 - 0.7350
14.5073 18990 - 0.7350
14.5149 19000 0.0127 -
14.5187 19005 - 0.7351
14.5302 19020 - 0.7351
14.5416 19035 - 0.7351
14.5531 19050 - 0.7348
14.5646 19065 - 0.7346
14.5760 19080 - 0.7344
14.5875 19095 - 0.7341
14.5989 19110 - 0.7338
14.6104 19125 - 0.7338
14.6218 19140 - 0.7335
14.6333 19155 - 0.7339
14.6448 19170 - 0.7341
14.6562 19185 - 0.7342
14.6677 19200 - 0.7342
14.6791 19215 - 0.7344
14.6906 19230 - 0.7345
14.7021 19245 - 0.7345
14.7135 19260 - 0.7343
14.7250 19275 - 0.7346
14.7364 19290 - 0.7345
14.7479 19305 - 0.7347
14.7594 19320 - 0.7349
14.7708 19335 - 0.7349
14.7823 19350 - 0.7352
14.7937 19365 - 0.7351
14.8052 19380 - 0.7349
14.8167 19395 - 0.7351
14.8281 19410 - 0.7349
14.8396 19425 - 0.7347
14.8510 19440 - 0.7347
14.8625 19455 - 0.7346
14.8739 19470 - 0.7345
14.8854 19485 - 0.7346
14.8969 19500 0.0124 0.7345
14.9083 19515 - 0.7346
14.9198 19530 - 0.7346
14.9312 19545 - 0.7347
14.9427 19560 - 0.7347
14.9542 19575 - 0.7347
14.9656 19590 - 0.7346
14.9771 19605 - 0.7347
14.9885 19620 - 0.7347
15.0 19635 - 0.7347

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.0
  • PyTorch: 2.6.0+cu126
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}