MLCD
Collection
Large-Scale Visual Representation Model
•
7 items
•
Updated
•
3
MLCD-ViT-bigG is a state-of-the-art vision transformer model enhanced with 2D Rotary Position Embedding (RoPE2D), achieving superior performance on document understanding and visual question answering tasks. Developed by DeepGlint AI, this model demonstrates exceptional capabilities in processing complex visual-language interactions.
We adopted the official LLaVA-NeXT and the official training dataset LLaVA-NeXT-Data for evaluating the foundational visual models.
Vision Tower | RoPE2D | ChartQA | DocVQA | InfoVQA | OCRBench | MMMU |
---|---|---|---|---|---|---|
CLIP (ViT-L-14-336px) | × | 66.52 | 75.21 | 38.88 | 525.00 | 44.20 |
SigLIP (ViT-SO400M-384px) | × | 69.28 | 76.71 | 41.38 | 554.00 | 46.78 |
DFN5B (ViT-H-14-378px) | × | 64.36 | 70.87 | 38.59 | 473.00 | 48.00 |
MLCD (ViT-L-14-336px) | × | 67.84 | 76.46 | 43.48 | 531.00 | 44.30 |
MLCD (ViT-bigG-14-336px) | √ | 71.07 | 79.63 | 44.38 | 572.00 | 46.78 |
pip install torch transformers
git clone https://github.com/deepglint/unicom
cd unicom/mlcd
from vit_rope2d_hf import MLCDVisionModel
from transformers import CLIPImageProcessor
from PIL import Image
import requests
import torch
# Load model and processor
model = MLCDVisionModel.from_pretrained("DeepGlint-AI/mlcd-vit-bigG-patch14-336")
processor = CLIPImageProcessor.from_pretrained("DeepGlint-AI/mlcd-vit-bigG-patch14-336")
# Process single image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
# Get visual features
with torch.no_grad():
outputs = model(**inputs)
features = outputs.last_hidden_state
print(f"Extracted features shape: {features.shape}")
# Extracted features shape: torch.Size([1, 577, 1664])