Llama-3-8b-Ita / README.md
DeepMount00's picture
Update README.md (#4)
d40847d verified
|
raw
history blame
1.81 kB
---
language:
- it
- en
license: llama3
library_name: transformers
base_model: meta-llama/Meta-Llama-3-8B
datasets:
- DeepMount00/llm_ita_ultra
---
## Model Architecture
- **Base Model:** [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)
- **Specialization:** Italian Language
## Evaluation
For a detailed comparison of model performance, check out the [Leaderboard for Italian Language Models](https://huggingface.co/spaces/FinancialSupport/open_ita_llm_leaderboard).
Here's a breakdown of the performance metrics:
| Metric | hellaswag_it acc_norm | arc_it acc_norm | m_mmlu_it 5-shot acc | Average |
|:----------------------------|:----------------------|:----------------|:---------------------|:--------|
| **Accuracy Normalized** | 0.6518 | 0.5441 | 0.5729 | 0.5896 |
---
## How to Use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_NAME = "DeepMount00/Llama-3-8b-Ita"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16).eval()
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
def generate_answer(prompt):
messages = [
{"role": "user", "content": prompt},
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=200, do_sample=True,
temperature=0.001)
decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
return decoded[0]
prompt = "Come si apre un file json in python?"
answer = generate_answer(prompt)
print(answer)
```
---
## Developer
[Michele Montebovi]