๐ก Found this resource helpful? Creating and maintaining open source AI models and datasets requires significant computational resources. If this work has been valuable to you, consider supporting my research to help me continue building tools that benefit the entire AI community. Every contribution directly funds more open source innovation! โ
Usage
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
model_id = "DeepMount00/Murai-350M-v0.1-beta"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
prompt = [{'role': 'user', 'content': """Scrivi una funzione python che somma due numeri"""}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=256,
temperature=0.1,
repetition_penalty=1.2,
do_sample=True
)
print(tokenizer.decode(tokens[0], skip_special_tokens=False))
Citation
@misc{deepmount_llm_2024,
title={Deep LLM: A 350M Parameter Language Model with 42 Layers},
author={MicheleMontebovi},
year={2025},
url={https://huggingface.co/DeepMount00/Murai-350M-v0.1-beta}
}
License
Apache 2.0
- Downloads last month
- 252
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support