Add new SentenceTransformer model with an openvino backend

#2
by vumichien - opened
1_Pooling/config.json CHANGED
@@ -1,10 +1,10 @@
1
- {
2
- "word_embedding_dimension": 768,
3
- "pooling_mode_cls_token": true,
4
- "pooling_mode_mean_tokens": false,
5
- "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false,
7
- "pooling_mode_weightedmean_tokens": false,
8
- "pooling_mode_lasttoken": false,
9
- "include_prompt": true
10
  }
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
  }
README.md CHANGED
@@ -1,437 +1,437 @@
1
- ---
2
- tags:
3
- - sentence-transformers
4
- - sentence-similarity
5
- - feature-extraction
6
- - generated_from_trainer
7
- - dataset_size:1546
8
- - loss:DualMarginContrastiveLoss
9
- - loss:CustomBatchAllTripletLoss
10
- widget:
11
- - source_sentence: 科目:塗装。名称:CL塗り。
12
- sentences:
13
- - 科目:建具。名称:SKW-#窓+扉。
14
- - 科目:塗装。名称:VP塗り。
15
- - 科目:建具。名称:SSD-#窓+扉。
16
- - source_sentence: 科目:塗装。名称:EP塗り。
17
- sentences:
18
- - 科目:建具。名称:HAW-#窓。
19
- - 科目:建具。名称:SLW-#間仕切。
20
- - 科目:塗装。名称:OS塗り。
21
- - source_sentence: 科目:塗装。名称:FSP塗り。
22
- sentences:
23
- - 科目:建具。名称:SP-#間仕切。
24
- - 科目:建具。名称:XD-#扉。
25
- - 科目:塗装。名称:WP塗り。
26
- - source_sentence: 科目:建具。名称:ACW-#窓。
27
- sentences:
28
- - 科目:建具。名称:GD-#窓+扉。
29
- - 科目:建具。名称:GD-#用窓。
30
- - 科目:建具。名称:WAW-#扉。
31
- - source_sentence: 科目:建具。名称:GCW-#窓。
32
- sentences:
33
- - 科目:建具。名称:STW-#窓。
34
- - 科目:建具。名称:TDW-#窓+扉。
35
- - 科目:建具。名称:AW-#窓。
36
- pipeline_tag: sentence-similarity
37
- library_name: sentence-transformers
38
- ---
39
-
40
- # SentenceTransformer
41
-
42
- This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
-
44
- ## Model Details
45
-
46
- ### Model Description
47
- - **Model Type:** Sentence Transformer
48
- <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
49
- - **Maximum Sequence Length:** 512 tokens
50
- - **Output Dimensionality:** 768 dimensions
51
- - **Similarity Function:** Cosine Similarity
52
- <!-- - **Training Dataset:** Unknown -->
53
- <!-- - **Language:** Unknown -->
54
- <!-- - **License:** Unknown -->
55
-
56
- ### Model Sources
57
-
58
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
-
62
- ### Full Model Architecture
63
-
64
- ```
65
- SentenceTransformer(
66
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
67
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
- )
69
- ```
70
-
71
- ## Usage
72
-
73
- ### Direct Usage (Sentence Transformers)
74
-
75
- First install the Sentence Transformers library:
76
-
77
- ```bash
78
- pip install -U sentence-transformers
79
- ```
80
-
81
- Then you can load this model and run inference.
82
- ```python
83
- from sentence_transformers import SentenceTransformer
84
-
85
- # Download from the 🤗 Hub
86
- model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v0_9_13")
87
- # Run inference
88
- sentences = [
89
- '科目:建具。名称:GCW-#窓。',
90
- '科目:建具。名称:AW-#窓。',
91
- '科目:建具。名称:STW-#窓。',
92
- ]
93
- embeddings = model.encode(sentences)
94
- print(embeddings.shape)
95
- # [3, 768]
96
-
97
- # Get the similarity scores for the embeddings
98
- similarities = model.similarity(embeddings, embeddings)
99
- print(similarities.shape)
100
- # [3, 3]
101
- ```
102
-
103
- <!--
104
- ### Direct Usage (Transformers)
105
-
106
- <details><summary>Click to see the direct usage in Transformers</summary>
107
-
108
- </details>
109
- -->
110
-
111
- <!--
112
- ### Downstream Usage (Sentence Transformers)
113
-
114
- You can finetune this model on your own dataset.
115
-
116
- <details><summary>Click to expand</summary>
117
-
118
- </details>
119
- -->
120
-
121
- <!--
122
- ### Out-of-Scope Use
123
-
124
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
- -->
126
-
127
- <!--
128
- ## Bias, Risks and Limitations
129
-
130
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
- -->
132
-
133
- <!--
134
- ### Recommendations
135
-
136
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
- -->
138
-
139
- ## Training Details
140
-
141
- ### Training Dataset
142
-
143
- #### Unnamed Dataset
144
-
145
- * Size: 1,546 training samples
146
- * Columns: <code>sentence</code> and <code>label</code>
147
- * Approximate statistics based on the first 1000 samples:
148
- | | sentence | label |
149
- |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
150
- | type | string | int |
151
- | details | <ul><li>min: 11 tokens</li><li>mean: 17.07 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>0: ~0.30%</li><li>1: ~0.30%</li><li>2: ~0.30%</li><li>3: ~0.30%</li><li>4: ~0.30%</li><li>5: ~0.30%</li><li>6: ~0.30%</li><li>7: ~0.30%</li><li>8: ~0.30%</li><li>9: ~0.30%</li><li>10: ~0.30%</li><li>11: ~0.40%</li><li>12: ~0.30%</li><li>13: ~0.30%</li><li>14: ~0.30%</li><li>15: ~0.30%</li><li>16: ~0.30%</li><li>17: ~0.30%</li><li>18: ~0.50%</li><li>19: ~0.30%</li><li>20: ~0.30%</li><li>21: ~0.30%</li><li>22: ~0.30%</li><li>23: ~0.30%</li><li>24: ~0.30%</li><li>25: ~0.30%</li><li>26: ~0.30%</li><li>27: ~0.30%</li><li>28: ~0.30%</li><li>29: ~0.30%</li><li>30: ~0.30%</li><li>31: ~0.30%</li><li>32: ~0.30%</li><li>33: ~0.30%</li><li>34: ~0.30%</li><li>35: ~0.30%</li><li>36: ~0.30%</li><li>37: ~0.30%</li><li>38: ~0.30%</li><li>39: ~0.30%</li><li>40: ~0.40%</li><li>41: ~0.30%</li><li>42: ~0.30%</li><li>43: ~0.30%</li><li>44: ~0.60%</li><li>45: ~0.70%</li><li>46: ~0.30%</li><li>47: ~0.30%</li><li>48: ~0.30%</li><li>49: ~0.30%</li><li>50: ~0.30%</li><li>51: ~0.30%</li><li>52: ~0.30%</li><li>53: ~0.30%</li><li>54: ~0.30%</li><li>55: ~0.30%</li><li>56: ~0.30%</li><li>57: ~0.80%</li><li>58: ~0.30%</li><li>59: ~0.30%</li><li>60: ~0.30%</li><li>61: ~0.30%</li><li>62: ~0.30%</li><li>63: ~0.30%</li><li>64: ~0.30%</li><li>65: ~0.30%</li><li>66: ~0.50%</li><li>67: ~0.30%</li><li>68: ~0.30%</li><li>69: ~0.30%</li><li>70: ~0.30%</li><li>71: ~0.30%</li><li>72: ~0.60%</li><li>73: ~0.30%</li><li>74: ~0.30%</li><li>75: ~0.30%</li><li>76: ~0.30%</li><li>77: ~0.30%</li><li>78: ~0.30%</li><li>79: ~0.30%</li><li>80: ~0.30%</li><li>81: ~0.30%</li><li>82: ~0.30%</li><li>83: ~0.30%</li><li>84: ~0.30%</li><li>85: ~0.30%</li><li>86: ~0.80%</li><li>87: ~0.60%</li><li>88: ~0.50%</li><li>89: ~0.30%</li><li>90: ~0.30%</li><li>91: ~0.60%</li><li>92: ~8.00%</li><li>93: ~1.70%</li><li>94: ~0.30%</li><li>95: ~0.30%</li><li>96: ~0.60%</li><li>97: ~0.30%</li><li>98: ~0.30%</li><li>99: ~0.30%</li><li>100: ~0.30%</li><li>101: ~1.20%</li><li>102: ~0.30%</li><li>103: ~0.30%</li><li>104: ~0.30%</li><li>105: ~0.30%</li><li>106: ~0.30%</li><li>107: ~0.30%</li><li>108: ~0.30%</li><li>109: ~0.30%</li><li>110: ~0.30%</li><li>111: ~0.30%</li><li>112: ~0.30%</li><li>113: ~0.30%</li><li>114: ~0.30%</li><li>115: ~0.30%</li><li>116: ~0.30%</li><li>117: ~0.30%</li><li>118: ~0.30%</li><li>119: ~0.30%</li><li>120: ~0.30%</li><li>121: ~0.50%</li><li>122: ~0.30%</li><li>123: ~0.30%</li><li>124: ~0.30%</li><li>125: ~0.30%</li><li>126: ~0.30%</li><li>127: ~0.30%</li><li>128: ~0.30%</li><li>129: ~0.40%</li><li>130: ~0.70%</li><li>131: ~0.30%</li><li>132: ~3.10%</li><li>133: ~0.30%</li><li>134: ~2.30%</li><li>135: ~0.30%</li><li>136: ~0.30%</li><li>137: ~0.50%</li><li>138: ~0.50%</li><li>139: ~0.50%</li><li>140: ~0.30%</li><li>141: ~0.30%</li><li>142: ~0.30%</li><li>143: ~0.30%</li><li>144: ~0.80%</li><li>145: ~0.30%</li><li>146: ~0.30%</li><li>147: ~0.30%</li><li>148: ~0.30%</li><li>149: ~0.30%</li><li>150: ~0.30%</li><li>151: ~0.30%</li><li>152: ~0.30%</li><li>153: ~0.30%</li><li>154: ~0.30%</li><li>155: ~0.30%</li><li>156: ~0.30%</li><li>157: ~0.30%</li><li>158: ~0.30%</li><li>159: ~0.30%</li><li>160: ~0.30%</li><li>161: ~0.30%</li><li>162: ~0.30%</li><li>163: ~0.30%</li><li>164: ~0.30%</li><li>165: ~0.30%</li><li>166: ~0.30%</li><li>167: ~0.30%</li><li>168: ~0.60%</li><li>169: ~0.30%</li><li>170: ~0.30%</li><li>171: ~0.30%</li><li>172: ~0.30%</li><li>173: ~0.30%</li><li>174: ~0.70%</li><li>175: ~0.30%</li><li>176: ~0.30%</li><li>177: ~0.30%</li><li>178: ~1.30%</li><li>179: ~0.30%</li><li>180: ~0.30%</li><li>181: ~0.30%</li><li>182: ~0.30%</li><li>183: ~0.30%</li><li>184: ~0.30%</li><li>185: ~1.10%</li><li>186: ~0.30%</li><li>187: ~0.30%</li><li>188: ~0.30%</li><li>189: ~0.30%</li><li>190: ~0.30%</li><li>191: ~0.30%</li><li>192: ~0.30%</li><li>193: ~0.30%</li><li>194: ~1.50%</li><li>195: ~0.30%</li><li>196: ~0.30%</li><li>197: ~0.30%</li><li>198: ~0.30%</li><li>199: ~1.00%</li><li>200: ~0.30%</li><li>201: ~0.30%</li><li>202: ~0.30%</li><li>203: ~1.80%</li><li>204: ~0.30%</li><li>205: ~0.50%</li><li>206: ~0.70%</li><li>207: ~0.30%</li><li>208: ~0.30%</li><li>209: ~0.30%</li><li>210: ~0.30%</li><li>211: ~0.30%</li><li>212: ~0.30%</li><li>213: ~0.30%</li><li>214: ~0.30%</li><li>215: ~4.00%</li><li>216: ~0.30%</li><li>217: ~0.30%</li><li>218: ~0.30%</li><li>219: ~0.60%</li><li>220: ~0.30%</li><li>221: ~0.30%</li><li>222: ~0.70%</li><li>223: ~0.30%</li><li>224: ~0.30%</li><li>225: ~0.30%</li><li>226: ~0.60%</li><li>227: ~0.30%</li><li>228: ~0.10%</li></ul> |
152
- * Samples:
153
- | sentence | label |
154
- |:-----------------------------------------|:---------------|
155
- | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
156
- | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
157
- | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
158
- * Loss: <code>sentence_transformer_lib.custom_batch_all_trip_loss.CustomBatchAllTripletLoss</code>
159
-
160
- ### Training Hyperparameters
161
- #### Non-Default Hyperparameters
162
-
163
- - `per_device_train_batch_size`: 512
164
- - `per_device_eval_batch_size`: 512
165
- - `learning_rate`: 1e-05
166
- - `weight_decay`: 0.01
167
- - `num_train_epochs`: 250
168
- - `warmup_ratio`: 0.1
169
- - `fp16`: True
170
- - `batch_sampler`: group_by_label
171
-
172
- #### All Hyperparameters
173
- <details><summary>Click to expand</summary>
174
-
175
- - `overwrite_output_dir`: False
176
- - `do_predict`: False
177
- - `eval_strategy`: no
178
- - `prediction_loss_only`: True
179
- - `per_device_train_batch_size`: 512
180
- - `per_device_eval_batch_size`: 512
181
- - `per_gpu_train_batch_size`: None
182
- - `per_gpu_eval_batch_size`: None
183
- - `gradient_accumulation_steps`: 1
184
- - `eval_accumulation_steps`: None
185
- - `torch_empty_cache_steps`: None
186
- - `learning_rate`: 1e-05
187
- - `weight_decay`: 0.01
188
- - `adam_beta1`: 0.9
189
- - `adam_beta2`: 0.999
190
- - `adam_epsilon`: 1e-08
191
- - `max_grad_norm`: 1.0
192
- - `num_train_epochs`: 250
193
- - `max_steps`: -1
194
- - `lr_scheduler_type`: linear
195
- - `lr_scheduler_kwargs`: {}
196
- - `warmup_ratio`: 0.1
197
- - `warmup_steps`: 0
198
- - `log_level`: passive
199
- - `log_level_replica`: warning
200
- - `log_on_each_node`: True
201
- - `logging_nan_inf_filter`: True
202
- - `save_safetensors`: True
203
- - `save_on_each_node`: False
204
- - `save_only_model`: False
205
- - `restore_callback_states_from_checkpoint`: False
206
- - `no_cuda`: False
207
- - `use_cpu`: False
208
- - `use_mps_device`: False
209
- - `seed`: 42
210
- - `data_seed`: None
211
- - `jit_mode_eval`: False
212
- - `use_ipex`: False
213
- - `bf16`: False
214
- - `fp16`: True
215
- - `fp16_opt_level`: O1
216
- - `half_precision_backend`: auto
217
- - `bf16_full_eval`: False
218
- - `fp16_full_eval`: False
219
- - `tf32`: None
220
- - `local_rank`: 0
221
- - `ddp_backend`: None
222
- - `tpu_num_cores`: None
223
- - `tpu_metrics_debug`: False
224
- - `debug`: []
225
- - `dataloader_drop_last`: False
226
- - `dataloader_num_workers`: 0
227
- - `dataloader_prefetch_factor`: None
228
- - `past_index`: -1
229
- - `disable_tqdm`: False
230
- - `remove_unused_columns`: True
231
- - `label_names`: None
232
- - `load_best_model_at_end`: False
233
- - `ignore_data_skip`: False
234
- - `fsdp`: []
235
- - `fsdp_min_num_params`: 0
236
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
237
- - `tp_size`: 0
238
- - `fsdp_transformer_layer_cls_to_wrap`: None
239
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
240
- - `deepspeed`: None
241
- - `label_smoothing_factor`: 0.0
242
- - `optim`: adamw_torch
243
- - `optim_args`: None
244
- - `adafactor`: False
245
- - `group_by_length`: False
246
- - `length_column_name`: length
247
- - `ddp_find_unused_parameters`: None
248
- - `ddp_bucket_cap_mb`: None
249
- - `ddp_broadcast_buffers`: False
250
- - `dataloader_pin_memory`: True
251
- - `dataloader_persistent_workers`: False
252
- - `skip_memory_metrics`: True
253
- - `use_legacy_prediction_loop`: False
254
- - `push_to_hub`: False
255
- - `resume_from_checkpoint`: None
256
- - `hub_model_id`: None
257
- - `hub_strategy`: every_save
258
- - `hub_private_repo`: None
259
- - `hub_always_push`: False
260
- - `gradient_checkpointing`: False
261
- - `gradient_checkpointing_kwargs`: None
262
- - `include_inputs_for_metrics`: False
263
- - `include_for_metrics`: []
264
- - `eval_do_concat_batches`: True
265
- - `fp16_backend`: auto
266
- - `push_to_hub_model_id`: None
267
- - `push_to_hub_organization`: None
268
- - `mp_parameters`:
269
- - `auto_find_batch_size`: False
270
- - `full_determinism`: False
271
- - `torchdynamo`: None
272
- - `ray_scope`: last
273
- - `ddp_timeout`: 1800
274
- - `torch_compile`: False
275
- - `torch_compile_backend`: None
276
- - `torch_compile_mode`: None
277
- - `dispatch_batches`: None
278
- - `split_batches`: None
279
- - `include_tokens_per_second`: False
280
- - `include_num_input_tokens_seen`: False
281
- - `neftune_noise_alpha`: None
282
- - `optim_target_modules`: None
283
- - `batch_eval_metrics`: False
284
- - `eval_on_start`: False
285
- - `use_liger_kernel`: False
286
- - `eval_use_gather_object`: False
287
- - `average_tokens_across_devices`: False
288
- - `prompts`: None
289
- - `batch_sampler`: group_by_label
290
- - `multi_dataset_batch_sampler`: proportional
291
-
292
- </details>
293
-
294
- ### Training Logs
295
- | Epoch | Step | Training Loss |
296
- |:--------:|:----:|:-------------:|
297
- | 2.5 | 10 | 34.4458 |
298
- | 5.0 | 20 | 9.5341 |
299
- | 7.5 | 30 | 2.0511 |
300
- | 10.0 | 40 | 1.5025 |
301
- | 12.5 | 50 | 1.4347 |
302
- | 15.0 | 60 | 1.1549 |
303
- | 17.5 | 70 | 1.2308 |
304
- | 20.0 | 80 | 1.0908 |
305
- | 22.5 | 90 | 1.1238 |
306
- | 25.0 | 100 | 0.9793 |
307
- | 2.5 | 10 | 1.1269 |
308
- | 5.0 | 20 | 0.8895 |
309
- | 7.5 | 30 | 0.8496 |
310
- | 10.0 | 40 | 0.6124 |
311
- | 12.5 | 50 | 0.5591 |
312
- | 15.0 | 60 | 0.4262 |
313
- | 17.5 | 70 | 0.3892 |
314
- | 20.0 | 80 | 0.3309 |
315
- | 22.5 | 90 | 0.3195 |
316
- | 25.0 | 100 | 0.0781 |
317
- | 7.5455 | 200 | 0.072 |
318
- | 11.4242 | 300 | 0.073 |
319
- | 15.3030 | 400 | 0.0715 |
320
- | 19.1818 | 500 | 0.069 |
321
- | 23.0606 | 600 | 0.0682 |
322
- | 26.7273 | 700 | 0.0659 |
323
- | 30.6061 | 800 | 0.0628 |
324
- | 34.4848 | 900 | 0.0618 |
325
- | 38.3636 | 1000 | 0.0639 |
326
- | 42.2424 | 1100 | 0.0635 |
327
- | 46.1212 | 1200 | 0.0635 |
328
- | 49.7879 | 1300 | 0.0627 |
329
- | 53.6667 | 1400 | 0.0593 |
330
- | 57.5455 | 1500 | 0.0605 |
331
- | 61.4242 | 1600 | 0.055 |
332
- | 65.3030 | 1700 | 0.0556 |
333
- | 69.1818 | 1800 | 0.0589 |
334
- | 73.0606 | 1900 | 0.0585 |
335
- | 76.7273 | 2000 | 0.0568 |
336
- | 80.6061 | 2100 | 0.0521 |
337
- | 84.4848 | 2200 | 0.0559 |
338
- | 88.3636 | 2300 | 0.0508 |
339
- | 92.2424 | 2400 | 0.051 |
340
- | 96.1212 | 2500 | 0.0532 |
341
- | 99.7879 | 2600 | 0.0545 |
342
- | 103.6667 | 2700 | 0.0532 |
343
- | 107.5455 | 2800 | 0.0542 |
344
- | 111.4242 | 2900 | 0.052 |
345
- | 115.3030 | 3000 | 0.0497 |
346
- | 119.1818 | 3100 | 0.0486 |
347
- | 123.0606 | 3200 | 0.0562 |
348
- | 126.7273 | 3300 | 0.0544 |
349
- | 130.6061 | 3400 | 0.0516 |
350
- | 134.4848 | 3500 | 0.0491 |
351
- | 138.3636 | 3600 | 0.0578 |
352
- | 142.2424 | 3700 | 0.0508 |
353
- | 146.1212 | 3800 | 0.0533 |
354
- | 149.7879 | 3900 | 0.0487 |
355
- | 153.6667 | 4000 | 0.045 |
356
- | 157.5455 | 4100 | 0.0454 |
357
- | 161.4242 | 4200 | 0.0497 |
358
- | 165.3030 | 4300 | 0.0466 |
359
- | 169.1818 | 4400 | 0.045 |
360
- | 173.0606 | 4500 | 0.0477 |
361
- | 176.7273 | 4600 | 0.0421 |
362
- | 180.6061 | 4700 | 0.051 |
363
- | 184.4848 | 4800 | 0.0389 |
364
- | 188.3636 | 4900 | 0.0449 |
365
- | 192.2424 | 5000 | 0.0425 |
366
- | 196.1212 | 5100 | 0.0456 |
367
- | 199.7879 | 5200 | 0.0465 |
368
- | 203.6667 | 5300 | 0.0435 |
369
- | 207.5455 | 5400 | 0.04 |
370
- | 211.4242 | 5500 | 0.0405 |
371
- | 215.3030 | 5600 | 0.0432 |
372
- | 219.1818 | 5700 | 0.0394 |
373
- | 223.0606 | 5800 | 0.0511 |
374
- | 226.7273 | 5900 | 0.0462 |
375
- | 230.6061 | 6000 | 0.0397 |
376
- | 234.4848 | 6100 | 0.0413 |
377
- | 238.3636 | 6200 | 0.0443 |
378
- | 242.2424 | 6300 | 0.0377 |
379
- | 246.1212 | 6400 | 0.0437 |
380
- | 249.7879 | 6500 | 0.0407 |
381
-
382
-
383
- ### Framework Versions
384
- - Python: 3.11.11
385
- - Sentence Transformers: 3.4.1
386
- - Transformers: 4.50.3
387
- - PyTorch: 2.6.0+cu124
388
- - Accelerate: 1.5.2
389
- - Datasets: 3.5.0
390
- - Tokenizers: 0.21.1
391
-
392
- ## Citation
393
-
394
- ### BibTeX
395
-
396
- #### Sentence Transformers
397
- ```bibtex
398
- @inproceedings{reimers-2019-sentence-bert,
399
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
400
- author = "Reimers, Nils and Gurevych, Iryna",
401
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
402
- month = "11",
403
- year = "2019",
404
- publisher = "Association for Computational Linguistics",
405
- url = "https://arxiv.org/abs/1908.10084",
406
- }
407
- ```
408
-
409
- #### CustomBatchAllTripletLoss
410
- ```bibtex
411
- @misc{hermans2017defense,
412
- title={In Defense of the Triplet Loss for Person Re-Identification},
413
- author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
414
- year={2017},
415
- eprint={1703.07737},
416
- archivePrefix={arXiv},
417
- primaryClass={cs.CV}
418
- }
419
- ```
420
-
421
- <!--
422
- ## Glossary
423
-
424
- *Clearly define terms in order to be accessible across audiences.*
425
- -->
426
-
427
- <!--
428
- ## Model Card Authors
429
-
430
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
431
- -->
432
-
433
- <!--
434
- ## Model Card Contact
435
-
436
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
437
  -->
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:1546
8
+ - loss:DualMarginContrastiveLoss
9
+ - loss:CustomBatchAllTripletLoss
10
+ widget:
11
+ - source_sentence: 科目:塗装。名称:CL塗り。
12
+ sentences:
13
+ - 科目:建具。名称:SKW-#窓+扉。
14
+ - 科目:塗装。名称:VP塗り。
15
+ - 科目:建具。名称:SSD-#窓+扉。
16
+ - source_sentence: 科目:塗装。名称:EP塗り。
17
+ sentences:
18
+ - 科目:建具。名称:HAW-#窓。
19
+ - 科目:建具。名称:SLW-#間仕切。
20
+ - 科目:塗装。名称:OS塗り。
21
+ - source_sentence: 科目:塗装。名称:FSP塗り。
22
+ sentences:
23
+ - 科目:建具。名称:SP-#間仕切。
24
+ - 科目:建具。名称:XD-#扉。
25
+ - 科目:塗装。名称:WP塗り。
26
+ - source_sentence: 科目:建具。名称:ACW-#窓。
27
+ sentences:
28
+ - 科目:建具。名称:GD-#窓+扉。
29
+ - 科目:建具。名称:GD-#用窓。
30
+ - 科目:建具。名称:WAW-#扉。
31
+ - source_sentence: 科目:建具。名称:GCW-#窓。
32
+ sentences:
33
+ - 科目:建具。名称:STW-#窓。
34
+ - 科目:建具。名称:TDW-#窓+扉。
35
+ - 科目:建具。名称:AW-#窓。
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Output Dimensionality:** 768 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ )
69
+ ```
70
+
71
+ ## Usage
72
+
73
+ ### Direct Usage (Sentence Transformers)
74
+
75
+ First install the Sentence Transformers library:
76
+
77
+ ```bash
78
+ pip install -U sentence-transformers
79
+ ```
80
+
81
+ Then you can load this model and run inference.
82
+ ```python
83
+ from sentence_transformers import SentenceTransformer
84
+
85
+ # Download from the 🤗 Hub
86
+ model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v0_9_13")
87
+ # Run inference
88
+ sentences = [
89
+ '科目:建具。名称:GCW-#窓。',
90
+ '科目:建具。名称:AW-#窓。',
91
+ '科目:建具。名称:STW-#窓。',
92
+ ]
93
+ embeddings = model.encode(sentences)
94
+ print(embeddings.shape)
95
+ # [3, 768]
96
+
97
+ # Get the similarity scores for the embeddings
98
+ similarities = model.similarity(embeddings, embeddings)
99
+ print(similarities.shape)
100
+ # [3, 3]
101
+ ```
102
+
103
+ <!--
104
+ ### Direct Usage (Transformers)
105
+
106
+ <details><summary>Click to see the direct usage in Transformers</summary>
107
+
108
+ </details>
109
+ -->
110
+
111
+ <!--
112
+ ### Downstream Usage (Sentence Transformers)
113
+
114
+ You can finetune this model on your own dataset.
115
+
116
+ <details><summary>Click to expand</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Out-of-Scope Use
123
+
124
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
+ -->
126
+
127
+ <!--
128
+ ## Bias, Risks and Limitations
129
+
130
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
+ -->
132
+
133
+ <!--
134
+ ### Recommendations
135
+
136
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
+ -->
138
+
139
+ ## Training Details
140
+
141
+ ### Training Dataset
142
+
143
+ #### Unnamed Dataset
144
+
145
+ * Size: 1,546 training samples
146
+ * Columns: <code>sentence</code> and <code>label</code>
147
+ * Approximate statistics based on the first 1000 samples:
148
+ | | sentence | label |
149
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
150
+ | type | string | int |
151
+ | details | <ul><li>min: 11 tokens</li><li>mean: 17.07 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>0: ~0.30%</li><li>1: ~0.30%</li><li>2: ~0.30%</li><li>3: ~0.30%</li><li>4: ~0.30%</li><li>5: ~0.30%</li><li>6: ~0.30%</li><li>7: ~0.30%</li><li>8: ~0.30%</li><li>9: ~0.30%</li><li>10: ~0.30%</li><li>11: ~0.40%</li><li>12: ~0.30%</li><li>13: ~0.30%</li><li>14: ~0.30%</li><li>15: ~0.30%</li><li>16: ~0.30%</li><li>17: ~0.30%</li><li>18: ~0.50%</li><li>19: ~0.30%</li><li>20: ~0.30%</li><li>21: ~0.30%</li><li>22: ~0.30%</li><li>23: ~0.30%</li><li>24: ~0.30%</li><li>25: ~0.30%</li><li>26: ~0.30%</li><li>27: ~0.30%</li><li>28: ~0.30%</li><li>29: ~0.30%</li><li>30: ~0.30%</li><li>31: ~0.30%</li><li>32: ~0.30%</li><li>33: ~0.30%</li><li>34: ~0.30%</li><li>35: ~0.30%</li><li>36: ~0.30%</li><li>37: ~0.30%</li><li>38: ~0.30%</li><li>39: ~0.30%</li><li>40: ~0.40%</li><li>41: ~0.30%</li><li>42: ~0.30%</li><li>43: ~0.30%</li><li>44: ~0.60%</li><li>45: ~0.70%</li><li>46: ~0.30%</li><li>47: ~0.30%</li><li>48: ~0.30%</li><li>49: ~0.30%</li><li>50: ~0.30%</li><li>51: ~0.30%</li><li>52: ~0.30%</li><li>53: ~0.30%</li><li>54: ~0.30%</li><li>55: ~0.30%</li><li>56: ~0.30%</li><li>57: ~0.80%</li><li>58: ~0.30%</li><li>59: ~0.30%</li><li>60: ~0.30%</li><li>61: ~0.30%</li><li>62: ~0.30%</li><li>63: ~0.30%</li><li>64: ~0.30%</li><li>65: ~0.30%</li><li>66: ~0.50%</li><li>67: ~0.30%</li><li>68: ~0.30%</li><li>69: ~0.30%</li><li>70: ~0.30%</li><li>71: ~0.30%</li><li>72: ~0.60%</li><li>73: ~0.30%</li><li>74: ~0.30%</li><li>75: ~0.30%</li><li>76: ~0.30%</li><li>77: ~0.30%</li><li>78: ~0.30%</li><li>79: ~0.30%</li><li>80: ~0.30%</li><li>81: ~0.30%</li><li>82: ~0.30%</li><li>83: ~0.30%</li><li>84: ~0.30%</li><li>85: ~0.30%</li><li>86: ~0.80%</li><li>87: ~0.60%</li><li>88: ~0.50%</li><li>89: ~0.30%</li><li>90: ~0.30%</li><li>91: ~0.60%</li><li>92: ~8.00%</li><li>93: ~1.70%</li><li>94: ~0.30%</li><li>95: ~0.30%</li><li>96: ~0.60%</li><li>97: ~0.30%</li><li>98: ~0.30%</li><li>99: ~0.30%</li><li>100: ~0.30%</li><li>101: ~1.20%</li><li>102: ~0.30%</li><li>103: ~0.30%</li><li>104: ~0.30%</li><li>105: ~0.30%</li><li>106: ~0.30%</li><li>107: ~0.30%</li><li>108: ~0.30%</li><li>109: ~0.30%</li><li>110: ~0.30%</li><li>111: ~0.30%</li><li>112: ~0.30%</li><li>113: ~0.30%</li><li>114: ~0.30%</li><li>115: ~0.30%</li><li>116: ~0.30%</li><li>117: ~0.30%</li><li>118: ~0.30%</li><li>119: ~0.30%</li><li>120: ~0.30%</li><li>121: ~0.50%</li><li>122: ~0.30%</li><li>123: ~0.30%</li><li>124: ~0.30%</li><li>125: ~0.30%</li><li>126: ~0.30%</li><li>127: ~0.30%</li><li>128: ~0.30%</li><li>129: ~0.40%</li><li>130: ~0.70%</li><li>131: ~0.30%</li><li>132: ~3.10%</li><li>133: ~0.30%</li><li>134: ~2.30%</li><li>135: ~0.30%</li><li>136: ~0.30%</li><li>137: ~0.50%</li><li>138: ~0.50%</li><li>139: ~0.50%</li><li>140: ~0.30%</li><li>141: ~0.30%</li><li>142: ~0.30%</li><li>143: ~0.30%</li><li>144: ~0.80%</li><li>145: ~0.30%</li><li>146: ~0.30%</li><li>147: ~0.30%</li><li>148: ~0.30%</li><li>149: ~0.30%</li><li>150: ~0.30%</li><li>151: ~0.30%</li><li>152: ~0.30%</li><li>153: ~0.30%</li><li>154: ~0.30%</li><li>155: ~0.30%</li><li>156: ~0.30%</li><li>157: ~0.30%</li><li>158: ~0.30%</li><li>159: ~0.30%</li><li>160: ~0.30%</li><li>161: ~0.30%</li><li>162: ~0.30%</li><li>163: ~0.30%</li><li>164: ~0.30%</li><li>165: ~0.30%</li><li>166: ~0.30%</li><li>167: ~0.30%</li><li>168: ~0.60%</li><li>169: ~0.30%</li><li>170: ~0.30%</li><li>171: ~0.30%</li><li>172: ~0.30%</li><li>173: ~0.30%</li><li>174: ~0.70%</li><li>175: ~0.30%</li><li>176: ~0.30%</li><li>177: ~0.30%</li><li>178: ~1.30%</li><li>179: ~0.30%</li><li>180: ~0.30%</li><li>181: ~0.30%</li><li>182: ~0.30%</li><li>183: ~0.30%</li><li>184: ~0.30%</li><li>185: ~1.10%</li><li>186: ~0.30%</li><li>187: ~0.30%</li><li>188: ~0.30%</li><li>189: ~0.30%</li><li>190: ~0.30%</li><li>191: ~0.30%</li><li>192: ~0.30%</li><li>193: ~0.30%</li><li>194: ~1.50%</li><li>195: ~0.30%</li><li>196: ~0.30%</li><li>197: ~0.30%</li><li>198: ~0.30%</li><li>199: ~1.00%</li><li>200: ~0.30%</li><li>201: ~0.30%</li><li>202: ~0.30%</li><li>203: ~1.80%</li><li>204: ~0.30%</li><li>205: ~0.50%</li><li>206: ~0.70%</li><li>207: ~0.30%</li><li>208: ~0.30%</li><li>209: ~0.30%</li><li>210: ~0.30%</li><li>211: ~0.30%</li><li>212: ~0.30%</li><li>213: ~0.30%</li><li>214: ~0.30%</li><li>215: ~4.00%</li><li>216: ~0.30%</li><li>217: ~0.30%</li><li>218: ~0.30%</li><li>219: ~0.60%</li><li>220: ~0.30%</li><li>221: ~0.30%</li><li>222: ~0.70%</li><li>223: ~0.30%</li><li>224: ~0.30%</li><li>225: ~0.30%</li><li>226: ~0.60%</li><li>227: ~0.30%</li><li>228: ~0.10%</li></ul> |
152
+ * Samples:
153
+ | sentence | label |
154
+ |:-----------------------------------------|:---------------|
155
+ | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
156
+ | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
157
+ | <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
158
+ * Loss: <code>sentence_transformer_lib.custom_batch_all_trip_loss.CustomBatchAllTripletLoss</code>
159
+
160
+ ### Training Hyperparameters
161
+ #### Non-Default Hyperparameters
162
+
163
+ - `per_device_train_batch_size`: 512
164
+ - `per_device_eval_batch_size`: 512
165
+ - `learning_rate`: 1e-05
166
+ - `weight_decay`: 0.01
167
+ - `num_train_epochs`: 250
168
+ - `warmup_ratio`: 0.1
169
+ - `fp16`: True
170
+ - `batch_sampler`: group_by_label
171
+
172
+ #### All Hyperparameters
173
+ <details><summary>Click to expand</summary>
174
+
175
+ - `overwrite_output_dir`: False
176
+ - `do_predict`: False
177
+ - `eval_strategy`: no
178
+ - `prediction_loss_only`: True
179
+ - `per_device_train_batch_size`: 512
180
+ - `per_device_eval_batch_size`: 512
181
+ - `per_gpu_train_batch_size`: None
182
+ - `per_gpu_eval_batch_size`: None
183
+ - `gradient_accumulation_steps`: 1
184
+ - `eval_accumulation_steps`: None
185
+ - `torch_empty_cache_steps`: None
186
+ - `learning_rate`: 1e-05
187
+ - `weight_decay`: 0.01
188
+ - `adam_beta1`: 0.9
189
+ - `adam_beta2`: 0.999
190
+ - `adam_epsilon`: 1e-08
191
+ - `max_grad_norm`: 1.0
192
+ - `num_train_epochs`: 250
193
+ - `max_steps`: -1
194
+ - `lr_scheduler_type`: linear
195
+ - `lr_scheduler_kwargs`: {}
196
+ - `warmup_ratio`: 0.1
197
+ - `warmup_steps`: 0
198
+ - `log_level`: passive
199
+ - `log_level_replica`: warning
200
+ - `log_on_each_node`: True
201
+ - `logging_nan_inf_filter`: True
202
+ - `save_safetensors`: True
203
+ - `save_on_each_node`: False
204
+ - `save_only_model`: False
205
+ - `restore_callback_states_from_checkpoint`: False
206
+ - `no_cuda`: False
207
+ - `use_cpu`: False
208
+ - `use_mps_device`: False
209
+ - `seed`: 42
210
+ - `data_seed`: None
211
+ - `jit_mode_eval`: False
212
+ - `use_ipex`: False
213
+ - `bf16`: False
214
+ - `fp16`: True
215
+ - `fp16_opt_level`: O1
216
+ - `half_precision_backend`: auto
217
+ - `bf16_full_eval`: False
218
+ - `fp16_full_eval`: False
219
+ - `tf32`: None
220
+ - `local_rank`: 0
221
+ - `ddp_backend`: None
222
+ - `tpu_num_cores`: None
223
+ - `tpu_metrics_debug`: False
224
+ - `debug`: []
225
+ - `dataloader_drop_last`: False
226
+ - `dataloader_num_workers`: 0
227
+ - `dataloader_prefetch_factor`: None
228
+ - `past_index`: -1
229
+ - `disable_tqdm`: False
230
+ - `remove_unused_columns`: True
231
+ - `label_names`: None
232
+ - `load_best_model_at_end`: False
233
+ - `ignore_data_skip`: False
234
+ - `fsdp`: []
235
+ - `fsdp_min_num_params`: 0
236
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
237
+ - `tp_size`: 0
238
+ - `fsdp_transformer_layer_cls_to_wrap`: None
239
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
240
+ - `deepspeed`: None
241
+ - `label_smoothing_factor`: 0.0
242
+ - `optim`: adamw_torch
243
+ - `optim_args`: None
244
+ - `adafactor`: False
245
+ - `group_by_length`: False
246
+ - `length_column_name`: length
247
+ - `ddp_find_unused_parameters`: None
248
+ - `ddp_bucket_cap_mb`: None
249
+ - `ddp_broadcast_buffers`: False
250
+ - `dataloader_pin_memory`: True
251
+ - `dataloader_persistent_workers`: False
252
+ - `skip_memory_metrics`: True
253
+ - `use_legacy_prediction_loop`: False
254
+ - `push_to_hub`: False
255
+ - `resume_from_checkpoint`: None
256
+ - `hub_model_id`: None
257
+ - `hub_strategy`: every_save
258
+ - `hub_private_repo`: None
259
+ - `hub_always_push`: False
260
+ - `gradient_checkpointing`: False
261
+ - `gradient_checkpointing_kwargs`: None
262
+ - `include_inputs_for_metrics`: False
263
+ - `include_for_metrics`: []
264
+ - `eval_do_concat_batches`: True
265
+ - `fp16_backend`: auto
266
+ - `push_to_hub_model_id`: None
267
+ - `push_to_hub_organization`: None
268
+ - `mp_parameters`:
269
+ - `auto_find_batch_size`: False
270
+ - `full_determinism`: False
271
+ - `torchdynamo`: None
272
+ - `ray_scope`: last
273
+ - `ddp_timeout`: 1800
274
+ - `torch_compile`: False
275
+ - `torch_compile_backend`: None
276
+ - `torch_compile_mode`: None
277
+ - `dispatch_batches`: None
278
+ - `split_batches`: None
279
+ - `include_tokens_per_second`: False
280
+ - `include_num_input_tokens_seen`: False
281
+ - `neftune_noise_alpha`: None
282
+ - `optim_target_modules`: None
283
+ - `batch_eval_metrics`: False
284
+ - `eval_on_start`: False
285
+ - `use_liger_kernel`: False
286
+ - `eval_use_gather_object`: False
287
+ - `average_tokens_across_devices`: False
288
+ - `prompts`: None
289
+ - `batch_sampler`: group_by_label
290
+ - `multi_dataset_batch_sampler`: proportional
291
+
292
+ </details>
293
+
294
+ ### Training Logs
295
+ | Epoch | Step | Training Loss |
296
+ |:--------:|:----:|:-------------:|
297
+ | 2.5 | 10 | 34.4458 |
298
+ | 5.0 | 20 | 9.5341 |
299
+ | 7.5 | 30 | 2.0511 |
300
+ | 10.0 | 40 | 1.5025 |
301
+ | 12.5 | 50 | 1.4347 |
302
+ | 15.0 | 60 | 1.1549 |
303
+ | 17.5 | 70 | 1.2308 |
304
+ | 20.0 | 80 | 1.0908 |
305
+ | 22.5 | 90 | 1.1238 |
306
+ | 25.0 | 100 | 0.9793 |
307
+ | 2.5 | 10 | 1.1269 |
308
+ | 5.0 | 20 | 0.8895 |
309
+ | 7.5 | 30 | 0.8496 |
310
+ | 10.0 | 40 | 0.6124 |
311
+ | 12.5 | 50 | 0.5591 |
312
+ | 15.0 | 60 | 0.4262 |
313
+ | 17.5 | 70 | 0.3892 |
314
+ | 20.0 | 80 | 0.3309 |
315
+ | 22.5 | 90 | 0.3195 |
316
+ | 25.0 | 100 | 0.0781 |
317
+ | 7.5455 | 200 | 0.072 |
318
+ | 11.4242 | 300 | 0.073 |
319
+ | 15.3030 | 400 | 0.0715 |
320
+ | 19.1818 | 500 | 0.069 |
321
+ | 23.0606 | 600 | 0.0682 |
322
+ | 26.7273 | 700 | 0.0659 |
323
+ | 30.6061 | 800 | 0.0628 |
324
+ | 34.4848 | 900 | 0.0618 |
325
+ | 38.3636 | 1000 | 0.0639 |
326
+ | 42.2424 | 1100 | 0.0635 |
327
+ | 46.1212 | 1200 | 0.0635 |
328
+ | 49.7879 | 1300 | 0.0627 |
329
+ | 53.6667 | 1400 | 0.0593 |
330
+ | 57.5455 | 1500 | 0.0605 |
331
+ | 61.4242 | 1600 | 0.055 |
332
+ | 65.3030 | 1700 | 0.0556 |
333
+ | 69.1818 | 1800 | 0.0589 |
334
+ | 73.0606 | 1900 | 0.0585 |
335
+ | 76.7273 | 2000 | 0.0568 |
336
+ | 80.6061 | 2100 | 0.0521 |
337
+ | 84.4848 | 2200 | 0.0559 |
338
+ | 88.3636 | 2300 | 0.0508 |
339
+ | 92.2424 | 2400 | 0.051 |
340
+ | 96.1212 | 2500 | 0.0532 |
341
+ | 99.7879 | 2600 | 0.0545 |
342
+ | 103.6667 | 2700 | 0.0532 |
343
+ | 107.5455 | 2800 | 0.0542 |
344
+ | 111.4242 | 2900 | 0.052 |
345
+ | 115.3030 | 3000 | 0.0497 |
346
+ | 119.1818 | 3100 | 0.0486 |
347
+ | 123.0606 | 3200 | 0.0562 |
348
+ | 126.7273 | 3300 | 0.0544 |
349
+ | 130.6061 | 3400 | 0.0516 |
350
+ | 134.4848 | 3500 | 0.0491 |
351
+ | 138.3636 | 3600 | 0.0578 |
352
+ | 142.2424 | 3700 | 0.0508 |
353
+ | 146.1212 | 3800 | 0.0533 |
354
+ | 149.7879 | 3900 | 0.0487 |
355
+ | 153.6667 | 4000 | 0.045 |
356
+ | 157.5455 | 4100 | 0.0454 |
357
+ | 161.4242 | 4200 | 0.0497 |
358
+ | 165.3030 | 4300 | 0.0466 |
359
+ | 169.1818 | 4400 | 0.045 |
360
+ | 173.0606 | 4500 | 0.0477 |
361
+ | 176.7273 | 4600 | 0.0421 |
362
+ | 180.6061 | 4700 | 0.051 |
363
+ | 184.4848 | 4800 | 0.0389 |
364
+ | 188.3636 | 4900 | 0.0449 |
365
+ | 192.2424 | 5000 | 0.0425 |
366
+ | 196.1212 | 5100 | 0.0456 |
367
+ | 199.7879 | 5200 | 0.0465 |
368
+ | 203.6667 | 5300 | 0.0435 |
369
+ | 207.5455 | 5400 | 0.04 |
370
+ | 211.4242 | 5500 | 0.0405 |
371
+ | 215.3030 | 5600 | 0.0432 |
372
+ | 219.1818 | 5700 | 0.0394 |
373
+ | 223.0606 | 5800 | 0.0511 |
374
+ | 226.7273 | 5900 | 0.0462 |
375
+ | 230.6061 | 6000 | 0.0397 |
376
+ | 234.4848 | 6100 | 0.0413 |
377
+ | 238.3636 | 6200 | 0.0443 |
378
+ | 242.2424 | 6300 | 0.0377 |
379
+ | 246.1212 | 6400 | 0.0437 |
380
+ | 249.7879 | 6500 | 0.0407 |
381
+
382
+
383
+ ### Framework Versions
384
+ - Python: 3.11.11
385
+ - Sentence Transformers: 3.4.1
386
+ - Transformers: 4.50.3
387
+ - PyTorch: 2.6.0+cu124
388
+ - Accelerate: 1.5.2
389
+ - Datasets: 3.5.0
390
+ - Tokenizers: 0.21.1
391
+
392
+ ## Citation
393
+
394
+ ### BibTeX
395
+
396
+ #### Sentence Transformers
397
+ ```bibtex
398
+ @inproceedings{reimers-2019-sentence-bert,
399
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
400
+ author = "Reimers, Nils and Gurevych, Iryna",
401
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
402
+ month = "11",
403
+ year = "2019",
404
+ publisher = "Association for Computational Linguistics",
405
+ url = "https://arxiv.org/abs/1908.10084",
406
+ }
407
+ ```
408
+
409
+ #### CustomBatchAllTripletLoss
410
+ ```bibtex
411
+ @misc{hermans2017defense,
412
+ title={In Defense of the Triplet Loss for Person Re-Identification},
413
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
414
+ year={2017},
415
+ eprint={1703.07737},
416
+ archivePrefix={arXiv},
417
+ primaryClass={cs.CV}
418
+ }
419
+ ```
420
+
421
+ <!--
422
+ ## Glossary
423
+
424
+ *Clearly define terms in order to be accessible across audiences.*
425
+ -->
426
+
427
+ <!--
428
+ ## Model Card Authors
429
+
430
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
431
+ -->
432
+
433
+ <!--
434
+ ## Model Card Contact
435
+
436
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
437
  -->
config.json CHANGED
@@ -1,24 +1,25 @@
1
- {
2
- "architectures": [
3
- "BertModel"
4
- ],
5
- "attention_probs_dropout_prob": 0.1,
6
- "classifier_dropout": null,
7
- "hidden_act": "gelu",
8
- "hidden_dropout_prob": 0.1,
9
- "hidden_size": 768,
10
- "initializer_range": 0.02,
11
- "intermediate_size": 3072,
12
- "layer_norm_eps": 1e-12,
13
- "max_position_embeddings": 512,
14
- "model_type": "bert",
15
- "num_attention_heads": 12,
16
- "num_hidden_layers": 12,
17
- "pad_token_id": 0,
18
- "position_embedding_type": "absolute",
19
- "torch_dtype": "float32",
20
- "transformers_version": "4.50.3",
21
- "type_vocab_size": 2,
22
- "use_cache": true,
23
- "vocab_size": 32768
24
- }
 
 
1
+ {
2
+ "_name_or_path": "C:/Project/Detomo/2025/meisai-check/meisai-api/meisaicheck-api/data/model\\Detomo/cl-nagoya-sup-simcse-ja-nss-v0_9_13-openvino-quantized",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.48.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 32768
25
+ }
config_sentence_transformers.json CHANGED
@@ -1,10 +1,10 @@
1
- {
2
- "__version__": {
3
- "sentence_transformers": "3.4.1",
4
- "transformers": "4.50.3",
5
- "pytorch": "2.6.0+cu124"
6
- },
7
- "prompts": {},
8
- "default_prompt_name": null,
9
- "similarity_fn_name": "cosine"
10
  }
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.6.0+cu126"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
  }
modules.json CHANGED
@@ -1,14 +1,14 @@
1
- [
2
- {
3
- "idx": 0,
4
- "name": "0",
5
- "path": "",
6
- "type": "sentence_transformers.models.Transformer"
7
- },
8
- {
9
- "idx": 1,
10
- "name": "1",
11
- "path": "1_Pooling",
12
- "type": "sentence_transformers.models.Pooling"
13
- }
14
  ]
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
  ]
openvino/openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2facadffd3d9f7503f1bf8b9a6a780bf6603d64f1e26de19e8367455fe1599f2
3
+ size 442470560
openvino/openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
- {
2
- "max_seq_length": 512,
3
- "do_lower_case": false
4
  }
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
  }
special_tokens_map.json CHANGED
@@ -1,37 +1,37 @@
1
- {
2
- "cls_token": {
3
- "content": "[CLS]",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "mask_token": {
10
- "content": "[MASK]",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "pad_token": {
17
- "content": "[PAD]",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "sep_token": {
24
- "content": "[SEP]",
25
- "lstrip": false,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "unk_token": {
31
- "content": "[UNK]",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- }
37
- }
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer_config.json CHANGED
@@ -1,64 +1,64 @@
1
- {
2
- "added_tokens_decoder": {
3
- "0": {
4
- "content": "[PAD]",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "1": {
12
- "content": "[UNK]",
13
- "lstrip": false,
14
- "normalized": false,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "2": {
20
- "content": "[CLS]",
21
- "lstrip": false,
22
- "normalized": false,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": true
26
- },
27
- "3": {
28
- "content": "[SEP]",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": true
34
- },
35
- "4": {
36
- "content": "[MASK]",
37
- "lstrip": false,
38
- "normalized": false,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": true
42
- }
43
- },
44
- "clean_up_tokenization_spaces": true,
45
- "cls_token": "[CLS]",
46
- "do_lower_case": false,
47
- "do_subword_tokenize": true,
48
- "do_word_tokenize": true,
49
- "extra_special_tokens": {},
50
- "jumanpp_kwargs": null,
51
- "mask_token": "[MASK]",
52
- "mecab_kwargs": {
53
- "mecab_dic": "unidic_lite"
54
- },
55
- "model_max_length": 512,
56
- "never_split": null,
57
- "pad_token": "[PAD]",
58
- "sep_token": "[SEP]",
59
- "subword_tokenizer_type": "wordpiece",
60
- "sudachi_kwargs": null,
61
- "tokenizer_class": "BertJapaneseTokenizer",
62
- "unk_token": "[UNK]",
63
- "word_tokenizer_type": "mecab"
64
- }
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "do_subword_tokenize": true,
48
+ "do_word_tokenize": true,
49
+ "extra_special_tokens": {},
50
+ "jumanpp_kwargs": null,
51
+ "mask_token": "[MASK]",
52
+ "mecab_kwargs": {
53
+ "mecab_dic": "unidic_lite"
54
+ },
55
+ "model_max_length": 512,
56
+ "never_split": null,
57
+ "pad_token": "[PAD]",
58
+ "sep_token": "[SEP]",
59
+ "subword_tokenizer_type": "wordpiece",
60
+ "sudachi_kwargs": null,
61
+ "tokenizer_class": "BertJapaneseTokenizer",
62
+ "unk_token": "[UNK]",
63
+ "word_tokenizer_type": "mecab"
64
+ }
vocab.txt CHANGED
The diff for this file is too large to render. See raw diff