metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:182343
- loss:CategoricalContrastiveLoss
widget:
- source_sentence: 科目:コンクリート。名称:浮き床コンクリート。
sentences:
- 科目:コンクリート。名称:普通コンクリート。摘要:JIS A5308 FC21 S18粗骨材20。備考:刊-コン 2118EXP.J面コン。
- 科目:コンクリート。名称:充填コンクリート(EXP_J内)。
- 科目:コンクリート。名称:免震上部コンクリート打設手間。
- source_sentence: 科目:コンクリート。名称:基礎部コンクリート打設手間。
sentences:
- >-
科目:コンクリート。名称:基礎部高流動コンクリート。摘要:FC36N/mm2 スランプフロー55~65高性能AE減水剤。備考:代価表
0059。
- 科目:コンクリート。名称:基礎部コンクリート。摘要:FC24N/mm2 スランプ15。備考:代価表 0040。
- >-
科目:コンクリート。名称:コンクリート(個別)。摘要:F0=18N/mm2 S=18 徳島1。備考:B1-111111
H2906BD 個別嵩上げコンクリート。
- source_sentence: 科目:コンクリート。名称:浮き床コンクリート。
sentences:
- >-
科目:コンクリート。名称:コンクリートポンプ圧送。摘要:100m3/回以上基本料金別途加算。備考:B0-434226 No.1
市場地上部コン(5F)。
- >-
科目:コンクリート。名称:普通コンクリート。摘要:JIS A5308 FC48 フロー60粗骨材20高性能AE減水剤。備考:刊-コン
4860K免震装置下部コン。
- 科目:コンクリート。名称:防水押えコンクリート。
- source_sentence: 科目:コンクリート。名称:基礎コンクリート。
sentences:
- 科目:コンクリート。名称:均しコンクリート。
- 科目:コンクリート。名称:普通コンクリート。摘要:FC=24 S18粗骨材地上部。備考:代価表 0060。
- >-
科目:コンクリート。名称:基礎部高流動コンクリート。摘要:FC36N/mm2 スランプフロー55~65高性能AE減水剤。備考:代価表
0059。
- source_sentence: 科目:コンクリート。名称:コンクリート打設手間。
sentences:
- 科目:コンクリート。名称:免震上部コンクリート打設手間。
- >-
科目:コンクリート。名称:普通コンクリート。摘要:JIS A5308 FC=18 S15粗骨材20。備考:B0-114112
H22.11 協議防水保護コンクリート。
- 科目:コンクリート。名称:コンクリート打設手間。
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v1_0_7_8")
# Run inference
sentences = [
'科目:コンクリート。名称:コンクリート打設手間。',
'科目:コンクリート。名称:免震上部コンクリート打設手間。',
'科目:コンクリート。名称:普通コンクリート。摘要:JIS A5308 FC=18 S15粗骨材20。備考:B0-114112 H22.11 協議防水保護コンクリート。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 182,343 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 11 tokens
- mean: 13.32 tokens
- max: 19 tokens
- min: 11 tokens
- mean: 34.8 tokens
- max: 72 tokens
- 0: ~68.50%
- 1: ~4.50%
- 2: ~27.00%
- Samples:
sentence1 sentence2 label 科目:コンクリート。名称:コンクリートポンプ圧送。
科目:コンクリート。名称:ポンプ圧送。
1
科目:コンクリート。名称:コンクリートポンプ圧送。
科目:コンクリート。名称:コンクリートポンプ圧送。摘要:100m3/回以上基本料金別途加算。備考:B0-434226 No.1 市場免震層下部コン。
2
科目:コンクリート。名称:コンクリートポンプ圧送。
科目:コンクリート。名称:コンクリートポンプ圧送。摘要:100m3/回以上基本料金別途加算。備考:B0-434226 No.1 市場基礎部マスコン。
2
- Loss:
sentence_transformer_lib.categorical_constrastive_loss.CategoricalContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 256per_device_eval_batch_size
: 256learning_rate
: 1e-05weight_decay
: 0.01num_train_epochs
: 10warmup_ratio
: 0.2fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0701 | 50 | 0.2825 |
0.1403 | 100 | 0.1467 |
0.2104 | 150 | 0.0947 |
0.2805 | 200 | 0.0839 |
0.3506 | 250 | 0.0769 |
0.4208 | 300 | 0.0684 |
0.4909 | 350 | 0.0625 |
0.5610 | 400 | 0.0582 |
0.6311 | 450 | 0.0579 |
0.7013 | 500 | 0.0514 |
0.7714 | 550 | 0.0514 |
0.8415 | 600 | 0.0448 |
0.9116 | 650 | 0.0436 |
0.9818 | 700 | 0.0422 |
1.0519 | 750 | 0.0371 |
1.1220 | 800 | 0.0377 |
1.1921 | 850 | 0.0353 |
1.2623 | 900 | 0.0354 |
1.3324 | 950 | 0.0325 |
1.4025 | 1000 | 0.0328 |
1.4727 | 1050 | 0.0302 |
1.5428 | 1100 | 0.0259 |
1.6129 | 1150 | 0.0267 |
1.6830 | 1200 | 0.0274 |
1.7532 | 1250 | 0.0262 |
1.8233 | 1300 | 0.0234 |
1.8934 | 1350 | 0.0244 |
1.9635 | 1400 | 0.0238 |
2.0337 | 1450 | 0.02 |
2.1038 | 1500 | 0.0187 |
2.1739 | 1550 | 0.0185 |
2.2440 | 1600 | 0.0178 |
2.3142 | 1650 | 0.016 |
2.3843 | 1700 | 0.0169 |
2.4544 | 1750 | 0.0171 |
2.5245 | 1800 | 0.0146 |
2.5947 | 1850 | 0.0145 |
2.6648 | 1900 | 0.0146 |
2.7349 | 1950 | 0.0139 |
2.8050 | 2000 | 0.0119 |
2.8752 | 2050 | 0.0131 |
2.9453 | 2100 | 0.0124 |
3.0154 | 2150 | 0.011 |
3.0856 | 2200 | 0.0109 |
3.1557 | 2250 | 0.0103 |
3.2258 | 2300 | 0.0102 |
3.2959 | 2350 | 0.0089 |
3.3661 | 2400 | 0.0083 |
3.4362 | 2450 | 0.0095 |
3.5063 | 2500 | 0.0085 |
3.5764 | 2550 | 0.009 |
3.6466 | 2600 | 0.0083 |
3.7167 | 2650 | 0.0093 |
3.7868 | 2700 | 0.0084 |
3.8569 | 2750 | 0.0084 |
3.9271 | 2800 | 0.0088 |
3.9972 | 2850 | 0.0086 |
4.0673 | 2900 | 0.0057 |
4.1374 | 2950 | 0.0078 |
4.2076 | 3000 | 0.0062 |
4.2777 | 3050 | 0.0066 |
4.3478 | 3100 | 0.006 |
4.4180 | 3150 | 0.0078 |
4.4881 | 3200 | 0.0056 |
4.5582 | 3250 | 0.0064 |
4.6283 | 3300 | 0.0063 |
4.6985 | 3350 | 0.0058 |
4.7686 | 3400 | 0.005 |
4.8387 | 3450 | 0.0057 |
4.9088 | 3500 | 0.0059 |
4.9790 | 3550 | 0.0063 |
5.0491 | 3600 | 0.0046 |
5.1192 | 3650 | 0.0041 |
5.1893 | 3700 | 0.005 |
5.2595 | 3750 | 0.0043 |
5.3296 | 3800 | 0.0046 |
5.3997 | 3850 | 0.0041 |
5.4698 | 3900 | 0.006 |
5.5400 | 3950 | 0.0052 |
5.6101 | 4000 | 0.0043 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}