MiniLM - CoSQA
Collection
Fine-tuned models of all-miniLM model on the CoSQA dataset
•
6 items
•
Updated
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Devy1/MiniLM-cosqa-32")
# Run inference
sentences = [
'bottom 5 rows in python',
'def table_top_abs(self):\n """Returns the absolute position of table top"""\n table_height = np.array([0, 0, self.table_full_size[2]])\n return string_to_array(self.floor.get("pos")) + table_height',
'def refresh(self, document):\n\t\t""" Load a new copy of a document from the database. does not\n\t\t\treplace the old one """\n\t\ttry:\n\t\t\told_cache_size = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\t\treturn obj',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.4728, -0.0350],
# [ 0.4728, 1.0000, -0.0494],
# [-0.0350, -0.0494, 1.0000]])
anchor
and positive
anchor | positive | |
---|---|---|
type | string | string |
details |
|
|
anchor | positive |
---|---|
1d array in char datatype in python |
def _convert_to_array(array_like, dtype): |
python condition non none |
def _not(condition=None, **kwargs): |
accessing a column from a matrix in python |
def get_column(self, X, column): |
MultipleNegativesRankingLoss
with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
per_device_train_batch_size
: 32fp16
: Trueoverwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}Epoch | Step | Training Loss |
---|---|---|
0.0035 | 1 | 0.5705 |
0.0071 | 2 | 0.1217 |
0.0106 | 3 | 0.1985 |
0.0142 | 4 | 0.2742 |
0.0177 | 5 | 0.0782 |
0.0213 | 6 | 0.1748 |
0.0248 | 7 | 0.1914 |
0.0284 | 8 | 0.0911 |
0.0319 | 9 | 0.0368 |
0.0355 | 10 | 0.219 |
0.0390 | 11 | 0.1571 |
0.0426 | 12 | 0.081 |
0.0461 | 13 | 0.1152 |
0.0496 | 14 | 0.0556 |
0.0532 | 15 | 0.1375 |
0.0567 | 16 | 0.1844 |
0.0603 | 17 | 0.3164 |
0.0638 | 18 | 0.2312 |
0.0674 | 19 | 0.1767 |
0.0709 | 20 | 0.0975 |
0.0745 | 21 | 0.2848 |
0.0780 | 22 | 0.0972 |
0.0816 | 23 | 0.3153 |
0.0851 | 24 | 0.1087 |
0.0887 | 25 | 0.1673 |
0.0922 | 26 | 0.2074 |
0.0957 | 27 | 0.2197 |
0.0993 | 28 | 0.2571 |
0.1028 | 29 | 0.1873 |
0.1064 | 30 | 0.0657 |
0.1099 | 31 | 0.0675 |
0.1135 | 32 | 0.0749 |
0.1170 | 33 | 0.0948 |
0.1206 | 34 | 0.0849 |
0.1241 | 35 | 0.0882 |
0.1277 | 36 | 0.0436 |
0.1312 | 37 | 0.1173 |
0.1348 | 38 | 0.1512 |
0.1383 | 39 | 0.1062 |
0.1418 | 40 | 0.0384 |
0.1454 | 41 | 0.148 |
0.1489 | 42 | 0.0432 |
0.1525 | 43 | 0.1027 |
0.1560 | 44 | 0.4193 |
0.1596 | 45 | 0.1003 |
0.1631 | 46 | 0.113 |
0.1667 | 47 | 0.0846 |
0.1702 | 48 | 0.0899 |
0.1738 | 49 | 0.0952 |
0.1773 | 50 | 0.0553 |
0.1809 | 51 | 0.11 |
0.1844 | 52 | 0.1955 |
0.1879 | 53 | 0.1103 |
0.1915 | 54 | 0.0738 |
0.1950 | 55 | 0.1217 |
0.1986 | 56 | 0.274 |
0.2021 | 57 | 0.1471 |
0.2057 | 58 | 0.0727 |
0.2092 | 59 | 0.0438 |
0.2128 | 60 | 0.1521 |
0.2163 | 61 | 0.1359 |
0.2199 | 62 | 0.1217 |
0.2234 | 63 | 0.2226 |
0.2270 | 64 | 0.2676 |
0.2305 | 65 | 0.1649 |
0.2340 | 66 | 0.1675 |
0.2376 | 67 | 0.1278 |
0.2411 | 68 | 0.1627 |
0.2447 | 69 | 0.108 |
0.2482 | 70 | 0.1327 |
0.2518 | 71 | 0.1762 |
0.2553 | 72 | 0.41 |
0.2589 | 73 | 0.1551 |
0.2624 | 74 | 0.1893 |
0.2660 | 75 | 0.0847 |
0.2695 | 76 | 0.0949 |
0.2730 | 77 | 0.2214 |
0.2766 | 78 | 0.0439 |
0.2801 | 79 | 0.1355 |
0.2837 | 80 | 0.1951 |
0.2872 | 81 | 0.068 |
0.2908 | 82 | 0.1032 |
0.2943 | 83 | 0.1131 |
0.2979 | 84 | 0.2245 |
0.3014 | 85 | 0.2323 |
0.3050 | 86 | 0.1512 |
0.3085 | 87 | 0.1686 |
0.3121 | 88 | 0.0797 |
0.3156 | 89 | 0.2182 |
0.3191 | 90 | 0.2181 |
0.3227 | 91 | 0.0944 |
0.3262 | 92 | 0.083 |
0.3298 | 93 | 0.1554 |
0.3333 | 94 | 0.0999 |
0.3369 | 95 | 0.1948 |
0.3404 | 96 | 0.1446 |
0.3440 | 97 | 0.2856 |
0.3475 | 98 | 0.0786 |
0.3511 | 99 | 0.1112 |
0.3546 | 100 | 0.0571 |
0.3582 | 101 | 0.2553 |
0.3617 | 102 | 0.0546 |
0.3652 | 103 | 0.1948 |
0.3688 | 104 | 0.0945 |
0.3723 | 105 | 0.0973 |
0.3759 | 106 | 0.0478 |
0.3794 | 107 | 0.3652 |
0.3830 | 108 | 0.2676 |
0.3865 | 109 | 0.1216 |
0.3901 | 110 | 0.0701 |
0.3936 | 111 | 0.0918 |
0.3972 | 112 | 0.1813 |
0.4007 | 113 | 0.1243 |
0.4043 | 114 | 0.2819 |
0.4078 | 115 | 0.0103 |
0.4113 | 116 | 0.2099 |
0.4149 | 117 | 0.0879 |
0.4184 | 118 | 0.1614 |
0.4220 | 119 | 0.0869 |
0.4255 | 120 | 0.0942 |
0.4291 | 121 | 0.0592 |
0.4326 | 122 | 0.1387 |
0.4362 | 123 | 0.0805 |
0.4397 | 124 | 0.1844 |
0.4433 | 125 | 0.0292 |
0.4468 | 126 | 0.3999 |
0.4504 | 127 | 0.1031 |
0.4539 | 128 | 0.3445 |
0.4574 | 129 | 0.2309 |
0.4610 | 130 | 0.1887 |
0.4645 | 131 | 0.2472 |
0.4681 | 132 | 0.1128 |
0.4716 | 133 | 0.1276 |
0.4752 | 134 | 0.1141 |
0.4787 | 135 | 0.1117 |
0.4823 | 136 | 0.1593 |
0.4858 | 137 | 0.0363 |
0.4894 | 138 | 0.1564 |
0.4929 | 139 | 0.21 |
0.4965 | 140 | 0.2024 |
0.5 | 141 | 0.1785 |
0.5035 | 142 | 0.1456 |
0.5071 | 143 | 0.0986 |
0.5106 | 144 | 0.1947 |
0.5142 | 145 | 0.1733 |
0.5177 | 146 | 0.1656 |
0.5213 | 147 | 0.0951 |
0.5248 | 148 | 0.1216 |
0.5284 | 149 | 0.0875 |
0.5319 | 150 | 0.1284 |
0.5355 | 151 | 0.1066 |
0.5390 | 152 | 0.0692 |
0.5426 | 153 | 0.2287 |
0.5461 | 154 | 0.233 |
0.5496 | 155 | 0.1066 |
0.5532 | 156 | 0.0862 |
0.5567 | 157 | 0.0877 |
0.5603 | 158 | 0.3095 |
0.5638 | 159 | 0.1237 |
0.5674 | 160 | 0.0682 |
0.5709 | 161 | 0.0741 |
0.5745 | 162 | 0.2003 |
0.5780 | 163 | 0.1392 |
0.5816 | 164 | 0.0493 |
0.5851 | 165 | 0.3129 |
0.5887 | 166 | 0.1186 |
0.5922 | 167 | 0.0369 |
0.5957 | 168 | 0.1224 |
0.5993 | 169 | 0.2212 |
0.6028 | 170 | 0.0809 |
0.6064 | 171 | 0.116 |
0.6099 | 172 | 0.2251 |
0.6135 | 173 | 0.0195 |
0.6170 | 174 | 0.0476 |
0.6206 | 175 | 0.0818 |
0.6241 | 176 | 0.0313 |
0.6277 | 177 | 0.188 |
0.6312 | 178 | 0.2736 |
0.6348 | 179 | 0.1444 |
0.6383 | 180 | 0.0924 |
0.6418 | 181 | 0.0895 |
0.6454 | 182 | 0.2116 |
0.6489 | 183 | 0.3288 |
0.6525 | 184 | 0.1659 |
0.6560 | 185 | 0.1367 |
0.6596 | 186 | 0.1834 |
0.6631 | 187 | 0.0822 |
0.6667 | 188 | 0.1384 |
0.6702 | 189 | 0.1602 |
0.6738 | 190 | 0.1325 |
0.6773 | 191 | 0.1033 |
0.6809 | 192 | 0.1102 |
0.6844 | 193 | 0.0786 |
0.6879 | 194 | 0.1158 |
0.6915 | 195 | 0.0639 |
0.6950 | 196 | 0.18 |
0.6986 | 197 | 0.0512 |
0.7021 | 198 | 0.1271 |
0.7057 | 199 | 0.0839 |
0.7092 | 200 | 0.0838 |
0.7128 | 201 | 0.0691 |
0.7163 | 202 | 0.1457 |
0.7199 | 203 | 0.1363 |
0.7234 | 204 | 0.1059 |
0.7270 | 205 | 0.1051 |
0.7305 | 206 | 0.0541 |
0.7340 | 207 | 0.1409 |
0.7376 | 208 | 0.0911 |
0.7411 | 209 | 0.2823 |
0.7447 | 210 | 0.156 |
0.7482 | 211 | 0.394 |
0.7518 | 212 | 0.1946 |
0.7553 | 213 | 0.0282 |
0.7589 | 214 | 0.1497 |
0.7624 | 215 | 0.1643 |
0.7660 | 216 | 0.0236 |
0.7695 | 217 | 0.0654 |
0.7730 | 218 | 0.0537 |
0.7766 | 219 | 0.1068 |
0.7801 | 220 | 0.051 |
0.7837 | 221 | 0.072 |
0.7872 | 222 | 0.0413 |
0.7908 | 223 | 0.0918 |
0.7943 | 224 | 0.1308 |
0.7979 | 225 | 0.0694 |
0.8014 | 226 | 0.0852 |
0.8050 | 227 | 0.0321 |
0.8085 | 228 | 0.1497 |
0.8121 | 229 | 0.0959 |
0.8156 | 230 | 0.226 |
0.8191 | 231 | 0.1129 |
0.8227 | 232 | 0.0831 |
0.8262 | 233 | 0.2181 |
0.8298 | 234 | 0.1054 |
0.8333 | 235 | 0.1812 |
0.8369 | 236 | 0.0455 |
0.8404 | 237 | 0.1413 |
0.8440 | 238 | 0.0801 |
0.8475 | 239 | 0.0301 |
0.8511 | 240 | 0.0846 |
0.8546 | 241 | 0.1862 |
0.8582 | 242 | 0.1015 |
0.8617 | 243 | 0.0459 |
0.8652 | 244 | 0.0774 |
0.8688 | 245 | 0.1444 |
0.8723 | 246 | 0.2849 |
0.8759 | 247 | 0.3935 |
0.8794 | 248 | 0.2126 |
0.8830 | 249 | 0.0845 |
0.8865 | 250 | 0.1429 |
0.8901 | 251 | 0.0107 |
0.8936 | 252 | 0.0599 |
0.8972 | 253 | 0.1192 |
0.9007 | 254 | 0.1369 |
0.9043 | 255 | 0.1246 |
0.9078 | 256 | 0.0163 |
0.9113 | 257 | 0.1844 |
0.9149 | 258 | 0.1017 |
0.9184 | 259 | 0.0415 |
0.9220 | 260 | 0.1658 |
0.9255 | 261 | 0.0755 |
0.9291 | 262 | 0.086 |
0.9326 | 263 | 0.081 |
0.9362 | 264 | 0.2776 |
0.9397 | 265 | 0.1284 |
0.9433 | 266 | 0.1591 |
0.9468 | 267 | 0.1397 |
0.9504 | 268 | 0.0334 |
0.9539 | 269 | 0.0449 |
0.9574 | 270 | 0.1382 |
0.9610 | 271 | 0.1736 |
0.9645 | 272 | 0.236 |
0.9681 | 273 | 0.225 |
0.9716 | 274 | 0.2444 |
0.9752 | 275 | 0.0497 |
0.9787 | 276 | 0.1212 |
0.9823 | 277 | 0.1405 |
0.9858 | 278 | 0.1116 |
0.9894 | 279 | 0.0369 |
0.9929 | 280 | 0.0321 |
0.9965 | 281 | 0.1481 |
1.0 | 282 | 0.1046 |
1.0035 | 283 | 0.0673 |
1.0071 | 284 | 0.078 |
1.0106 | 285 | 0.0723 |
1.0142 | 286 | 0.1328 |
1.0177 | 287 | 0.1399 |
1.0213 | 288 | 0.186 |
1.0248 | 289 | 0.0747 |
1.0284 | 290 | 0.0291 |
1.0319 | 291 | 0.0427 |
1.0355 | 292 | 0.0288 |
1.0390 | 293 | 0.1552 |
1.0426 | 294 | 0.0123 |
1.0461 | 295 | 0.0617 |
1.0496 | 296 | 0.0646 |
1.0532 | 297 | 0.2001 |
1.0567 | 298 | 0.068 |
1.0603 | 299 | 0.0108 |
1.0638 | 300 | 0.0776 |
1.0674 | 301 | 0.1037 |
1.0709 | 302 | 0.0087 |
1.0745 | 303 | 0.1564 |
1.0780 | 304 | 0.0665 |
1.0816 | 305 | 0.0246 |
1.0851 | 306 | 0.061 |
1.0887 | 307 | 0.038 |
1.0922 | 308 | 0.1016 |
1.0957 | 309 | 0.0434 |
1.0993 | 310 | 0.1178 |
1.1028 | 311 | 0.1235 |
1.1064 | 312 | 0.0164 |
1.1099 | 313 | 0.0838 |
1.1135 | 314 | 0.0516 |
1.1170 | 315 | 0.1195 |
1.1206 | 316 | 0.1026 |
1.1241 | 317 | 0.0387 |
1.1277 | 318 | 0.1057 |
1.1312 | 319 | 0.0332 |
1.1348 | 320 | 0.033 |
1.1383 | 321 | 0.0648 |
1.1418 | 322 | 0.0067 |
1.1454 | 323 | 0.0402 |
1.1489 | 324 | 0.1376 |
1.1525 | 325 | 0.0852 |
1.1560 | 326 | 0.0245 |
1.1596 | 327 | 0.087 |
1.1631 | 328 | 0.0403 |
1.1667 | 329 | 0.0998 |
1.1702 | 330 | 0.0634 |
1.1738 | 331 | 0.0218 |
1.1773 | 332 | 0.1244 |
1.1809 | 333 | 0.1178 |
1.1844 | 334 | 0.1135 |
1.1879 | 335 | 0.0721 |
1.1915 | 336 | 0.0427 |
1.1950 | 337 | 0.0314 |
1.1986 | 338 | 0.0577 |
1.2021 | 339 | 0.0337 |
1.2057 | 340 | 0.0312 |
1.2092 | 341 | 0.0336 |
1.2128 | 342 | 0.0289 |
1.2163 | 343 | 0.0946 |
1.2199 | 344 | 0.2581 |
1.2234 | 345 | 0.1359 |
1.2270 | 346 | 0.0223 |
1.2305 | 347 | 0.055 |
1.2340 | 348 | 0.0591 |
1.2376 | 349 | 0.0286 |
1.2411 | 350 | 0.0128 |
1.2447 | 351 | 0.0676 |
1.2482 | 352 | 0.0744 |
1.2518 | 353 | 0.0208 |
1.2553 | 354 | 0.0877 |
1.2589 | 355 | 0.0759 |
1.2624 | 356 | 0.052 |
1.2660 | 357 | 0.2666 |
1.2695 | 358 | 0.0455 |
1.2730 | 359 | 0.0893 |
1.2766 | 360 | 0.1706 |
1.2801 | 361 | 0.059 |
1.2837 | 362 | 0.049 |
1.2872 | 363 | 0.1249 |
1.2908 | 364 | 0.0229 |
1.2943 | 365 | 0.1088 |
1.2979 | 366 | 0.198 |
1.3014 | 367 | 0.2119 |
1.3050 | 368 | 0.0397 |
1.3085 | 369 | 0.1772 |
1.3121 | 370 | 0.1251 |
1.3156 | 371 | 0.0286 |
1.3191 | 372 | 0.0273 |
1.3227 | 373 | 0.1161 |
1.3262 | 374 | 0.1128 |
1.3298 | 375 | 0.1323 |
1.3333 | 376 | 0.0245 |
1.3369 | 377 | 0.0342 |
1.3404 | 378 | 0.1177 |
1.3440 | 379 | 0.0584 |
1.3475 | 380 | 0.0164 |
1.3511 | 381 | 0.1174 |
1.3546 | 382 | 0.043 |
1.3582 | 383 | 0.0706 |
1.3617 | 384 | 0.0862 |
1.3652 | 385 | 0.1093 |
1.3688 | 386 | 0.0849 |
1.3723 | 387 | 0.0252 |
1.3759 | 388 | 0.0517 |
1.3794 | 389 | 0.0634 |
1.3830 | 390 | 0.0526 |
1.3865 | 391 | 0.1388 |
1.3901 | 392 | 0.0747 |
1.3936 | 393 | 0.0362 |
1.3972 | 394 | 0.1148 |
1.4007 | 395 | 0.0208 |
1.4043 | 396 | 0.1426 |
1.4078 | 397 | 0.1611 |
1.4113 | 398 | 0.0302 |
1.4149 | 399 | 0.0446 |
1.4184 | 400 | 0.0182 |
1.4220 | 401 | 0.089 |
1.4255 | 402 | 0.1423 |
1.4291 | 403 | 0.1599 |
1.4326 | 404 | 0.0438 |
1.4362 | 405 | 0.0103 |
1.4397 | 406 | 0.083 |
1.4433 | 407 | 0.0914 |
1.4468 | 408 | 0.0436 |
1.4504 | 409 | 0.124 |
1.4539 | 410 | 0.0896 |
1.4574 | 411 | 0.256 |
1.4610 | 412 | 0.0061 |
1.4645 | 413 | 0.0529 |
1.4681 | 414 | 0.0851 |
1.4716 | 415 | 0.08 |
1.4752 | 416 | 0.0115 |
1.4787 | 417 | 0.0784 |
1.4823 | 418 | 0.0321 |
1.4858 | 419 | 0.0976 |
1.4894 | 420 | 0.0725 |
1.4929 | 421 | 0.0834 |
1.4965 | 422 | 0.122 |
1.5 | 423 | 0.1294 |
1.5035 | 424 | 0.2754 |
1.5071 | 425 | 0.0884 |
1.5106 | 426 | 0.076 |
1.5142 | 427 | 0.0799 |
1.5177 | 428 | 0.0439 |
1.5213 | 429 | 0.0943 |
1.5248 | 430 | 0.077 |
1.5284 | 431 | 0.0696 |
1.5319 | 432 | 0.0251 |
1.5355 | 433 | 0.1715 |
1.5390 | 434 | 0.0913 |
1.5426 | 435 | 0.0251 |
1.5461 | 436 | 0.0642 |
1.5496 | 437 | 0.0375 |
1.5532 | 438 | 0.0381 |
1.5567 | 439 | 0.0628 |
1.5603 | 440 | 0.095 |
1.5638 | 441 | 0.0441 |
1.5674 | 442 | 0.0496 |
1.5709 | 443 | 0.0531 |
1.5745 | 444 | 0.0304 |
1.5780 | 445 | 0.2032 |
1.5816 | 446 | 0.109 |
1.5851 | 447 | 0.1481 |
1.5887 | 448 | 0.0706 |
1.5922 | 449 | 0.0346 |
1.5957 | 450 | 0.0364 |
1.5993 | 451 | 0.0513 |
1.6028 | 452 | 0.3153 |
1.6064 | 453 | 0.1135 |
1.6099 | 454 | 0.1034 |
1.6135 | 455 | 0.0566 |
1.6170 | 456 | 0.0707 |
1.6206 | 457 | 0.1564 |
1.6241 | 458 | 0.1602 |
1.6277 | 459 | 0.0149 |
1.6312 | 460 | 0.1243 |
1.6348 | 461 | 0.0579 |
1.6383 | 462 | 0.1693 |
1.6418 | 463 | 0.0911 |
1.6454 | 464 | 0.0278 |
1.6489 | 465 | 0.0315 |
1.6525 | 466 | 0.0176 |
1.6560 | 467 | 0.1197 |
1.6596 | 468 | 0.0162 |
1.6631 | 469 | 0.0492 |
1.6667 | 470 | 0.0495 |
1.6702 | 471 | 0.0318 |
1.6738 | 472 | 0.0703 |
1.6773 | 473 | 0.0175 |
1.6809 | 474 | 0.1457 |
1.6844 | 475 | 0.026 |
1.6879 | 476 | 0.067 |
1.6915 | 477 | 0.0657 |
1.6950 | 478 | 0.1421 |
1.6986 | 479 | 0.0341 |
1.7021 | 480 | 0.022 |
1.7057 | 481 | 0.0641 |
1.7092 | 482 | 0.1315 |
1.7128 | 483 | 0.0328 |
1.7163 | 484 | 0.0489 |
1.7199 | 485 | 0.0199 |
1.7234 | 486 | 0.0475 |
1.7270 | 487 | 0.0662 |
1.7305 | 488 | 0.0133 |
1.7340 | 489 | 0.0081 |
1.7376 | 490 | 0.0356 |
1.7411 | 491 | 0.092 |
1.7447 | 492 | 0.0653 |
1.7482 | 493 | 0.0457 |
1.7518 | 494 | 0.0949 |
1.7553 | 495 | 0.0108 |
1.7589 | 496 | 0.0287 |
1.7624 | 497 | 0.1043 |
1.7660 | 498 | 0.0166 |
1.7695 | 499 | 0.0068 |
1.7730 | 500 | 0.1521 |
1.7766 | 501 | 0.0356 |
1.7801 | 502 | 0.0083 |
1.7837 | 503 | 0.1221 |
1.7872 | 504 | 0.046 |
1.7908 | 505 | 0.0339 |
1.7943 | 506 | 0.021 |
1.7979 | 507 | 0.1706 |
1.8014 | 508 | 0.0176 |
1.8050 | 509 | 0.0275 |
1.8085 | 510 | 0.0521 |
1.8121 | 511 | 0.1083 |
1.8156 | 512 | 0.098 |
1.8191 | 513 | 0.0746 |
1.8227 | 514 | 0.0944 |
1.8262 | 515 | 0.075 |
1.8298 | 516 | 0.0997 |
1.8333 | 517 | 0.0416 |
1.8369 | 518 | 0.154 |
1.8404 | 519 | 0.1534 |
1.8440 | 520 | 0.0387 |
1.8475 | 521 | 0.0957 |
1.8511 | 522 | 0.0136 |
1.8546 | 523 | 0.0426 |
1.8582 | 524 | 0.1499 |
1.8617 | 525 | 0.0111 |
1.8652 | 526 | 0.122 |
1.8688 | 527 | 0.2204 |
1.8723 | 528 | 0.1677 |
1.8759 | 529 | 0.0298 |
1.8794 | 530 | 0.0873 |
1.8830 | 531 | 0.0747 |
1.8865 | 532 | 0.0849 |
1.8901 | 533 | 0.0525 |
1.8936 | 534 | 0.0233 |
1.8972 | 535 | 0.0805 |
1.9007 | 536 | 0.0236 |
1.9043 | 537 | 0.142 |
1.9078 | 538 | 0.0585 |
1.9113 | 539 | 0.0271 |
1.9149 | 540 | 0.1606 |
1.9184 | 541 | 0.2148 |
1.9220 | 542 | 0.0568 |
1.9255 | 543 | 0.0248 |
1.9291 | 544 | 0.0878 |
1.9326 | 545 | 0.0044 |
1.9362 | 546 | 0.0354 |
1.9397 | 547 | 0.0638 |
1.9433 | 548 | 0.1875 |
1.9468 | 549 | 0.031 |
1.9504 | 550 | 0.0547 |
1.9539 | 551 | 0.1292 |
1.9574 | 552 | 0.23 |
1.9610 | 553 | 0.0913 |
1.9645 | 554 | 0.0561 |
1.9681 | 555 | 0.0189 |
1.9716 | 556 | 0.0177 |
1.9752 | 557 | 0.0195 |
1.9787 | 558 | 0.1032 |
1.9823 | 559 | 0.1502 |
1.9858 | 560 | 0.0457 |
1.9894 | 561 | 0.0577 |
1.9929 | 562 | 0.1172 |
1.9965 | 563 | 0.0504 |
2.0 | 564 | 0.0374 |
2.0035 | 565 | 0.1079 |
2.0071 | 566 | 0.0609 |
2.0106 | 567 | 0.0366 |
2.0142 | 568 | 0.0674 |
2.0177 | 569 | 0.1084 |
2.0213 | 570 | 0.066 |
2.0248 | 571 | 0.0102 |
2.0284 | 572 | 0.0876 |
2.0319 | 573 | 0.0407 |
2.0355 | 574 | 0.0581 |
2.0390 | 575 | 0.1215 |
2.0426 | 576 | 0.0068 |
2.0461 | 577 | 0.1015 |
2.0496 | 578 | 0.0047 |
2.0532 | 579 | 0.0925 |
2.0567 | 580 | 0.0836 |
2.0603 | 581 | 0.021 |
2.0638 | 582 | 0.0209 |
2.0674 | 583 | 0.0702 |
2.0709 | 584 | 0.0117 |
2.0745 | 585 | 0.0517 |
2.0780 | 586 | 0.061 |
2.0816 | 587 | 0.0207 |
2.0851 | 588 | 0.034 |
2.0887 | 589 | 0.1045 |
2.0922 | 590 | 0.03 |
2.0957 | 591 | 0.0081 |
2.0993 | 592 | 0.0234 |
2.1028 | 593 | 0.073 |
2.1064 | 594 | 0.0074 |
2.1099 | 595 | 0.0655 |
2.1135 | 596 | 0.079 |
2.1170 | 597 | 0.0358 |
2.1206 | 598 | 0.1006 |
2.1241 | 599 | 0.0624 |
2.1277 | 600 | 0.0479 |
2.1312 | 601 | 0.0105 |
2.1348 | 602 | 0.0448 |
2.1383 | 603 | 0.0305 |
2.1418 | 604 | 0.0432 |
2.1454 | 605 | 0.0771 |
2.1489 | 606 | 0.0545 |
2.1525 | 607 | 0.0299 |
2.1560 | 608 | 0.0712 |
2.1596 | 609 | 0.1006 |
2.1631 | 610 | 0.0117 |
2.1667 | 611 | 0.0462 |
2.1702 | 612 | 0.0576 |
2.1738 | 613 | 0.0696 |
2.1773 | 614 | 0.0685 |
2.1809 | 615 | 0.0596 |
2.1844 | 616 | 0.0127 |
2.1879 | 617 | 0.0089 |
2.1915 | 618 | 0.0135 |
2.1950 | 619 | 0.2405 |
2.1986 | 620 | 0.0212 |
2.2021 | 621 | 0.0637 |
2.2057 | 622 | 0.1356 |
2.2092 | 623 | 0.0943 |
2.2128 | 624 | 0.0147 |
2.2163 | 625 | 0.0038 |
2.2199 | 626 | 0.0624 |
2.2234 | 627 | 0.016 |
2.2270 | 628 | 0.032 |
2.2305 | 629 | 0.0154 |
2.2340 | 630 | 0.0724 |
2.2376 | 631 | 0.008 |
2.2411 | 632 | 0.0877 |
2.2447 | 633 | 0.0228 |
2.2482 | 634 | 0.1929 |
2.2518 | 635 | 0.026 |
2.2553 | 636 | 0.0117 |
2.2589 | 637 | 0.0325 |
2.2624 | 638 | 0.0127 |
2.2660 | 639 | 0.0054 |
2.2695 | 640 | 0.0909 |
2.2730 | 641 | 0.0326 |
2.2766 | 642 | 0.0291 |
2.2801 | 643 | 0.0499 |
2.2837 | 644 | 0.0394 |
2.2872 | 645 | 0.0422 |
2.2908 | 646 | 0.0156 |
2.2943 | 647 | 0.0626 |
2.2979 | 648 | 0.0143 |
2.3014 | 649 | 0.0707 |
2.3050 | 650 | 0.0474 |
2.3085 | 651 | 0.0387 |
2.3121 | 652 | 0.104 |
2.3156 | 653 | 0.0981 |
2.3191 | 654 | 0.0284 |
2.3227 | 655 | 0.0123 |
2.3262 | 656 | 0.1346 |
2.3298 | 657 | 0.0157 |
2.3333 | 658 | 0.1276 |
2.3369 | 659 | 0.0634 |
2.3404 | 660 | 0.0327 |
2.3440 | 661 | 0.0633 |
2.3475 | 662 | 0.0618 |
2.3511 | 663 | 0.0171 |
2.3546 | 664 | 0.141 |
2.3582 | 665 | 0.0626 |
2.3617 | 666 | 0.0149 |
2.3652 | 667 | 0.0455 |
2.3688 | 668 | 0.0507 |
2.3723 | 669 | 0.0492 |
2.3759 | 670 | 0.1528 |
2.3794 | 671 | 0.0484 |
2.3830 | 672 | 0.0826 |
2.3865 | 673 | 0.044 |
2.3901 | 674 | 0.2045 |
2.3936 | 675 | 0.0083 |
2.3972 | 676 | 0.0109 |
2.4007 | 677 | 0.0262 |
2.4043 | 678 | 0.0965 |
2.4078 | 679 | 0.1926 |
2.4113 | 680 | 0.0494 |
2.4149 | 681 | 0.1212 |
2.4184 | 682 | 0.0467 |
2.4220 | 683 | 0.0093 |
2.4255 | 684 | 0.0662 |
2.4291 | 685 | 0.0487 |
2.4326 | 686 | 0.1391 |
2.4362 | 687 | 0.1416 |
2.4397 | 688 | 0.1691 |
2.4433 | 689 | 0.0936 |
2.4468 | 690 | 0.1812 |
2.4504 | 691 | 0.0327 |
2.4539 | 692 | 0.1146 |
2.4574 | 693 | 0.0711 |
2.4610 | 694 | 0.0947 |
2.4645 | 695 | 0.0525 |
2.4681 | 696 | 0.0223 |
2.4716 | 697 | 0.0266 |
2.4752 | 698 | 0.206 |
2.4787 | 699 | 0.0669 |
2.4823 | 700 | 0.0421 |
2.4858 | 701 | 0.0198 |
2.4894 | 702 | 0.0255 |
2.4929 | 703 | 0.008 |
2.4965 | 704 | 0.0183 |
2.5 | 705 | 0.0498 |
2.5035 | 706 | 0.0839 |
2.5071 | 707 | 0.0219 |
2.5106 | 708 | 0.0977 |
2.5142 | 709 | 0.0206 |
2.5177 | 710 | 0.0051 |
2.5213 | 711 | 0.0199 |
2.5248 | 712 | 0.0366 |
2.5284 | 713 | 0.01 |
2.5319 | 714 | 0.1622 |
2.5355 | 715 | 0.0452 |
2.5390 | 716 | 0.0681 |
2.5426 | 717 | 0.0103 |
2.5461 | 718 | 0.0059 |
2.5496 | 719 | 0.0493 |
2.5532 | 720 | 0.016 |
2.5567 | 721 | 0.134 |
2.5603 | 722 | 0.0119 |
2.5638 | 723 | 0.1173 |
2.5674 | 724 | 0.2206 |
2.5709 | 725 | 0.0368 |
2.5745 | 726 | 0.0176 |
2.5780 | 727 | 0.0599 |
2.5816 | 728 | 0.123 |
2.5851 | 729 | 0.0764 |
2.5887 | 730 | 0.0695 |
2.5922 | 731 | 0.0405 |
2.5957 | 732 | 0.012 |
2.5993 | 733 | 0.0469 |
2.6028 | 734 | 0.0142 |
2.6064 | 735 | 0.1236 |
2.6099 | 736 | 0.0194 |
2.6135 | 737 | 0.115 |
2.6170 | 738 | 0.105 |
2.6206 | 739 | 0.0937 |
2.6241 | 740 | 0.1916 |
2.6277 | 741 | 0.0903 |
2.6312 | 742 | 0.1579 |
2.6348 | 743 | 0.0902 |
2.6383 | 744 | 0.0304 |
2.6418 | 745 | 0.0881 |
2.6454 | 746 | 0.0646 |
2.6489 | 747 | 0.0941 |
2.6525 | 748 | 0.0204 |
2.6560 | 749 | 0.1679 |
2.6596 | 750 | 0.028 |
2.6631 | 751 | 0.0205 |
2.6667 | 752 | 0.0307 |
2.6702 | 753 | 0.0365 |
2.6738 | 754 | 0.0141 |
2.6773 | 755 | 0.0212 |
2.6809 | 756 | 0.0447 |
2.6844 | 757 | 0.1072 |
2.6879 | 758 | 0.0332 |
2.6915 | 759 | 0.0513 |
2.6950 | 760 | 0.062 |
2.6986 | 761 | 0.0941 |
2.7021 | 762 | 0.0201 |
2.7057 | 763 | 0.2132 |
2.7092 | 764 | 0.0323 |
2.7128 | 765 | 0.0654 |
2.7163 | 766 | 0.059 |
2.7199 | 767 | 0.1027 |
2.7234 | 768 | 0.0091 |
2.7270 | 769 | 0.0585 |
2.7305 | 770 | 0.0102 |
2.7340 | 771 | 0.0265 |
2.7376 | 772 | 0.0403 |
2.7411 | 773 | 0.0913 |
2.7447 | 774 | 0.0212 |
2.7482 | 775 | 0.0423 |
2.7518 | 776 | 0.083 |
2.7553 | 777 | 0.0073 |
2.7589 | 778 | 0.0815 |
2.7624 | 779 | 0.0786 |
2.7660 | 780 | 0.1079 |
2.7695 | 781 | 0.0477 |
2.7730 | 782 | 0.116 |
2.7766 | 783 | 0.0523 |
2.7801 | 784 | 0.049 |
2.7837 | 785 | 0.0153 |
2.7872 | 786 | 0.0173 |
2.7908 | 787 | 0.0656 |
2.7943 | 788 | 0.0094 |
2.7979 | 789 | 0.0757 |
2.8014 | 790 | 0.0924 |
2.8050 | 791 | 0.0717 |
2.8085 | 792 | 0.011 |
2.8121 | 793 | 0.0312 |
2.8156 | 794 | 0.0188 |
2.8191 | 795 | 0.0244 |
2.8227 | 796 | 0.0138 |
2.8262 | 797 | 0.0956 |
2.8298 | 798 | 0.0125 |
2.8333 | 799 | 0.0196 |
2.8369 | 800 | 0.0766 |
2.8404 | 801 | 0.0105 |
2.8440 | 802 | 0.0347 |
2.8475 | 803 | 0.1152 |
2.8511 | 804 | 0.0745 |
2.8546 | 805 | 0.0275 |
2.8582 | 806 | 0.1096 |
2.8617 | 807 | 0.0571 |
2.8652 | 808 | 0.008 |
2.8688 | 809 | 0.0428 |
2.8723 | 810 | 0.0639 |
2.8759 | 811 | 0.1364 |
2.8794 | 812 | 0.062 |
2.8830 | 813 | 0.0782 |
2.8865 | 814 | 0.0311 |
2.8901 | 815 | 0.1234 |
2.8936 | 816 | 0.0302 |
2.8972 | 817 | 0.0984 |
2.9007 | 818 | 0.0141 |
2.9043 | 819 | 0.1342 |
2.9078 | 820 | 0.0115 |
2.9113 | 821 | 0.0608 |
2.9149 | 822 | 0.0246 |
2.9184 | 823 | 0.0388 |
2.9220 | 824 | 0.0557 |
2.9255 | 825 | 0.011 |
2.9291 | 826 | 0.0262 |
2.9326 | 827 | 0.0655 |
2.9362 | 828 | 0.0843 |
2.9397 | 829 | 0.0549 |
2.9433 | 830 | 0.0791 |
2.9468 | 831 | 0.0254 |
2.9504 | 832 | 0.1365 |
2.9539 | 833 | 0.2078 |
2.9574 | 834 | 0.0485 |
2.9610 | 835 | 0.0309 |
2.9645 | 836 | 0.0974 |
2.9681 | 837 | 0.004 |
2.9716 | 838 | 0.1136 |
2.9752 | 839 | 0.0227 |
2.9787 | 840 | 0.0458 |
2.9823 | 841 | 0.016 |
2.9858 | 842 | 0.1003 |
2.9894 | 843 | 0.0289 |
2.9929 | 844 | 0.0702 |
2.9965 | 845 | 0.055 |
3.0 | 846 | 0.2404 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
sentence-transformers/all-MiniLM-L6-v2