Sentiment_Analysis / README.md
DineshKumar1329's picture
Update README.md
d4b6683 verified
|
raw
history blame
2.06 kB
metadata
license: mit
language:
  - en
metrics:
  - accuracy
library_name: sklearn
pipeline_tag: text-classification
tags:
  - code

Model Training

The sentiment analysis model is trained using a Support Vector Machine (SVM) classifier with a linear kernel. The cleaned text data is transformed into a bag-of-words representation using the CountVectorizer. The trained model is saved as Sentiment_classifier_model.joblib, and the corresponding TF-IDF vectorizer is saved as vectorizer_model.joblib.

  • from huggingface_hub import hf_hub_download
  • import joblib
  • from sklearn.preprocessing import LabelEncoder

Download the sentiment analysis model

  • model = joblib.load( hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib") )

Load the TF-IDF vectorizer

tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your path

def clean_text(text):

Implement your text cleaning logic here (e.g., lowercase, remove punctuation, etc.)

This example simply lowercases the text

return text.lower()

def predict_sentiment(user_input): """Predicts sentiment for a given user input.""" cleaned_text = clean_text(user_input) input_matrix = tfidf_vectorizer.transform([cleaned_text]) prediction = model.predict(input_matrix)[0]

if isinstance(model.classes_, LabelEncoder): prediction = model.classes_.inverse_transform([prediction])[0]

return prediction

Get user input

user_input = input("Enter a sentence: ")

Predict sentiment

predicted_sentiment = predict_sentiment(user_input)

print(f"Predicted Sentiment: {predicted_sentiment}")

Optional: Save predictions (modify paths as needed)

try: df_existing = pd.read_excel('/content/output_predictions.xlsx') except FileNotFoundError: df_existing = pd.DataFrame()

new_prediction = pd.DataFrame({'User_Input': [user_input], 'Predicted_Sentiment': [predicted_sentiment]}) df_combined = pd.concat([df_existing, new_prediction], ignore_index=True) df_combined.to_excel('/content/output_predictions.xlsx', index=False)