metadata
license: mit
language:
- en
metrics:
- accuracy
library_name: sklearn
pipeline_tag: text-classification
tags:
- code
Model Training
The sentiment analysis model is trained using a Support Vector Machine (SVM) classifier with a linear kernel. The cleaned text data is transformed into a bag-of-words representation using the CountVectorizer. The trained model is saved as Sentiment_classifier_model.joblib
, and the corresponding TF-IDF vectorizer is saved as vectorizer_model.joblib
.
Download the Vectorizer model first and load the model :
Usage :
from huggingface_hub import hf_hub_download
import joblib
from sklearn.preprocessing import LabelEncoder
# Download and load the sentiment analysis model from Hugging Face Model Hub
model = joblib.load(hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib"))
# Load the TF-IDF vectorizer
tfidf_vectorizer = joblib.load(hf_hub_download("DineshKumar1329/Sentiment_Analysis", "vectorizer_model.joblib"))
def clean_text(text):
return text.lower()
def predict_sentiment(user_input):
"""Predicts sentiment for a given user input."""
cleaned_text = clean_text(user_input)
input_matrix = tfidf_vectorizer.transform([cleaned_text])
prediction = model.predict(input_matrix)[0]
if isinstance(model.classes_, LabelEncoder):
prediction = model.classes_.inverse_transform([prediction])[0]
return prediction
# Get user input
user_input = input("Enter a sentence: ")
# Predict sentiment
predicted_sentiment = predict_sentiment(user_input)
# Output the prediction
print(f"Predicted Sentiment: {predicted_sentiment}")