Update README.md
Browse files
README.md
CHANGED
|
@@ -22,20 +22,13 @@ import joblib
|
|
| 22 |
model = joblib.load(
|
| 23 |
hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib")
|
| 24 |
)
|
| 25 |
-
|
| 26 |
tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your actual filename
|
| 27 |
-
|
| 28 |
user_input = input("Enter a sentence: ")
|
| 29 |
-
|
| 30 |
cleaned_input = clean_text(user_input)
|
| 31 |
-
|
| 32 |
input_matrix = tfidf_vectorizer.transform([cleaned_input])
|
| 33 |
-
|
| 34 |
prediction = model.predict(input_matrix)[0]
|
| 35 |
-
|
| 36 |
print(f"Predicted Sentiment: {prediction}")
|
| 37 |
df_result = pd.DataFrame({'User_Input': [user_input], 'Predicted_Sentiment': [prediction]})
|
| 38 |
-
|
| 39 |
excel_filename = '/content/output_predictions.xlsx' # Replace with your desired filename
|
| 40 |
try:
|
| 41 |
# Load existing predictions from the Excel file
|
|
@@ -43,9 +36,7 @@ try:
|
|
| 43 |
|
| 44 |
# Append the new predictions to the existing DataFrame
|
| 45 |
df_combined = pd.concat([df_existing, df_result], ignore_index=True)
|
| 46 |
-
|
| 47 |
except FileNotFoundError:
|
| 48 |
# If the file doesn't exist, create a new DataFrame
|
| 49 |
df_combined = df_result
|
| 50 |
-
|
| 51 |
df_combined.to_excel(excel_filename, index=False)
|
|
|
|
| 22 |
model = joblib.load(
|
| 23 |
hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib")
|
| 24 |
)
|
|
|
|
| 25 |
tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your actual filename
|
|
|
|
| 26 |
user_input = input("Enter a sentence: ")
|
|
|
|
| 27 |
cleaned_input = clean_text(user_input)
|
|
|
|
| 28 |
input_matrix = tfidf_vectorizer.transform([cleaned_input])
|
|
|
|
| 29 |
prediction = model.predict(input_matrix)[0]
|
|
|
|
| 30 |
print(f"Predicted Sentiment: {prediction}")
|
| 31 |
df_result = pd.DataFrame({'User_Input': [user_input], 'Predicted_Sentiment': [prediction]})
|
|
|
|
| 32 |
excel_filename = '/content/output_predictions.xlsx' # Replace with your desired filename
|
| 33 |
try:
|
| 34 |
# Load existing predictions from the Excel file
|
|
|
|
| 36 |
|
| 37 |
# Append the new predictions to the existing DataFrame
|
| 38 |
df_combined = pd.concat([df_existing, df_result], ignore_index=True)
|
|
|
|
| 39 |
except FileNotFoundError:
|
| 40 |
# If the file doesn't exist, create a new DataFrame
|
| 41 |
df_combined = df_result
|
|
|
|
| 42 |
df_combined.to_excel(excel_filename, index=False)
|