DineshKumar1329 commited on
Commit
1d9fe70
·
verified ·
1 Parent(s): cf753ac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -9
README.md CHANGED
@@ -22,20 +22,13 @@ import joblib
22
  model = joblib.load(
23
  hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib")
24
  )
25
-
26
  tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your actual filename
27
-
28
  user_input = input("Enter a sentence: ")
29
-
30
  cleaned_input = clean_text(user_input)
31
-
32
  input_matrix = tfidf_vectorizer.transform([cleaned_input])
33
-
34
  prediction = model.predict(input_matrix)[0]
35
-
36
  print(f"Predicted Sentiment: {prediction}")
37
  df_result = pd.DataFrame({'User_Input': [user_input], 'Predicted_Sentiment': [prediction]})
38
-
39
  excel_filename = '/content/output_predictions.xlsx' # Replace with your desired filename
40
  try:
41
  # Load existing predictions from the Excel file
@@ -43,9 +36,7 @@ try:
43
 
44
  # Append the new predictions to the existing DataFrame
45
  df_combined = pd.concat([df_existing, df_result], ignore_index=True)
46
-
47
  except FileNotFoundError:
48
  # If the file doesn't exist, create a new DataFrame
49
  df_combined = df_result
50
-
51
  df_combined.to_excel(excel_filename, index=False)
 
22
  model = joblib.load(
23
  hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib")
24
  )
 
25
  tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your actual filename
 
26
  user_input = input("Enter a sentence: ")
 
27
  cleaned_input = clean_text(user_input)
 
28
  input_matrix = tfidf_vectorizer.transform([cleaned_input])
 
29
  prediction = model.predict(input_matrix)[0]
 
30
  print(f"Predicted Sentiment: {prediction}")
31
  df_result = pd.DataFrame({'User_Input': [user_input], 'Predicted_Sentiment': [prediction]})
 
32
  excel_filename = '/content/output_predictions.xlsx' # Replace with your desired filename
33
  try:
34
  # Load existing predictions from the Excel file
 
36
 
37
  # Append the new predictions to the existing DataFrame
38
  df_combined = pd.concat([df_existing, df_result], ignore_index=True)
 
39
  except FileNotFoundError:
40
  # If the file doesn't exist, create a new DataFrame
41
  df_combined = df_result
 
42
  df_combined.to_excel(excel_filename, index=False)