DineshKumar1329 commited on
Commit
cf753ac
·
verified ·
1 Parent(s): fbff6ba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -12
README.md CHANGED
@@ -22,31 +22,20 @@ import joblib
22
  model = joblib.load(
23
  hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib")
24
  )
25
- # only load pickle files from sources you trust
26
- # read more about it here https://skops.readthedocs.io/en/stable/persistence.html
27
 
28
- # Load the TF-IDF vectorizer used during training
29
  tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your actual filename
30
 
31
-
32
- # Take user input
33
  user_input = input("Enter a sentence: ")
34
 
35
- # Clean the user input
36
  cleaned_input = clean_text(user_input)
37
 
38
- # Transform the cleaned text data using the TF-IDF vectorizer
39
  input_matrix = tfidf_vectorizer.transform([cleaned_input])
40
 
41
- # Make prediction
42
  prediction = model.predict(input_matrix)[0]
43
 
44
- # Display the prediction
45
  print(f"Predicted Sentiment: {prediction}")
46
- # Create a DataFrame with the results
47
  df_result = pd.DataFrame({'User_Input': [user_input], 'Predicted_Sentiment': [prediction]})
48
 
49
- # Save the DataFrame to an Excel file (append if the file already exists)
50
  excel_filename = '/content/output_predictions.xlsx' # Replace with your desired filename
51
  try:
52
  # Load existing predictions from the Excel file
@@ -59,5 +48,4 @@ except FileNotFoundError:
59
  # If the file doesn't exist, create a new DataFrame
60
  df_combined = df_result
61
 
62
- # Save the combined DataFrame to the Excel file
63
  df_combined.to_excel(excel_filename, index=False)
 
22
  model = joblib.load(
23
  hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib")
24
  )
 
 
25
 
 
26
  tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your actual filename
27
 
 
 
28
  user_input = input("Enter a sentence: ")
29
 
 
30
  cleaned_input = clean_text(user_input)
31
 
 
32
  input_matrix = tfidf_vectorizer.transform([cleaned_input])
33
 
 
34
  prediction = model.predict(input_matrix)[0]
35
 
 
36
  print(f"Predicted Sentiment: {prediction}")
 
37
  df_result = pd.DataFrame({'User_Input': [user_input], 'Predicted_Sentiment': [prediction]})
38
 
 
39
  excel_filename = '/content/output_predictions.xlsx' # Replace with your desired filename
40
  try:
41
  # Load existing predictions from the Excel file
 
48
  # If the file doesn't exist, create a new DataFrame
49
  df_combined = df_result
50
 
 
51
  df_combined.to_excel(excel_filename, index=False)