Update README.md
Browse files
README.md
CHANGED
@@ -50,3 +50,51 @@ predicted_sentiment = predict_sentiment(user_input)
|
|
50 |
print(f"Predicted Sentiment: {predicted_sentiment}")
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
print(f"Predicted Sentiment: {predicted_sentiment}")
|
51 |
|
52 |
|
53 |
+
|
54 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
55 |
+
from sklearn.preprocessing import LabelEncoder
|
56 |
+
import joblib
|
57 |
+
|
58 |
+
|
59 |
+
def load_model_and_tokenizer(model_name="DineshKumar1329/Sentiment_Analysis"):
|
60 |
+
"""Loads the sentiment analysis model and tokenizer from Hugging Face Hub."""
|
61 |
+
|
62 |
+
# Replace with desired model name if using a different model
|
63 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
65 |
+
|
66 |
+
return model, tokenizer
|
67 |
+
|
68 |
+
|
69 |
+
def clean_text(text):
|
70 |
+
"""Converts the input text to lowercase for case-insensitive processing."""
|
71 |
+
return text.lower()
|
72 |
+
|
73 |
+
|
74 |
+
def predict_sentiment(user_input, model, tokenizer):
|
75 |
+
"""Predicts sentiment for a given user input."""
|
76 |
+
|
77 |
+
cleaned_text = clean_text(user_input)
|
78 |
+
encoded_text = tokenizer(cleaned_text, return_tensors="pt")
|
79 |
+
|
80 |
+
with torch.no_grad():
|
81 |
+
outputs = model(**encoded_text)
|
82 |
+
logits = outputs.logits
|
83 |
+
prediction = torch.argmax(logits, dim=-1).item()
|
84 |
+
|
85 |
+
if isinstance(model.config.label_list, LabelEncoder):
|
86 |
+
prediction = model.config.label_list.inverse_transform([prediction])[0]
|
87 |
+
|
88 |
+
return prediction
|
89 |
+
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
model, tokenizer = load_model_and_tokenizer()
|
93 |
+
|
94 |
+
user_input = input("Enter a sentence: ")
|
95 |
+
|
96 |
+
predicted_sentiment = predict_sentiment(user_input, model, tokenizer)
|
97 |
+
|
98 |
+
print(f"Predicted Sentiment: {predicted_sentiment}")
|
99 |
+
|
100 |
+
|