DineshKumar1329 commited on
Commit
e6b5610
·
verified ·
1 Parent(s): 1d9fe70

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -16
README.md CHANGED
@@ -19,24 +19,46 @@ The sentiment analysis model is trained using a Support Vector Machine (SVM) cla
19
 
20
  from huggingface_hub import hf_hub_download
21
  import joblib
 
 
 
22
  model = joblib.load(
23
- hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib")
24
  )
25
- tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your actual filename
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  user_input = input("Enter a sentence: ")
27
- cleaned_input = clean_text(user_input)
28
- input_matrix = tfidf_vectorizer.transform([cleaned_input])
29
- prediction = model.predict(input_matrix)[0]
30
- print(f"Predicted Sentiment: {prediction}")
31
- df_result = pd.DataFrame({'User_Input': [user_input], 'Predicted_Sentiment': [prediction]})
32
- excel_filename = '/content/output_predictions.xlsx' # Replace with your desired filename
33
- try:
34
- # Load existing predictions from the Excel file
35
- df_existing = pd.read_excel(excel_filename)
36
 
37
- # Append the new predictions to the existing DataFrame
38
- df_combined = pd.concat([df_existing, df_result], ignore_index=True)
 
 
 
 
 
 
39
  except FileNotFoundError:
40
- # If the file doesn't exist, create a new DataFrame
41
- df_combined = df_result
42
- df_combined.to_excel(excel_filename, index=False)
 
 
 
19
 
20
  from huggingface_hub import hf_hub_download
21
  import joblib
22
+ from sklearn.preprocessing import LabelEncoder
23
+
24
+ # Download the sentiment analysis model
25
  model = joblib.load(
26
+ hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib")
27
  )
28
+
29
+ # Load the TF-IDF vectorizer
30
+ tfidf_vectorizer = joblib.load('/content/vectorizer_model.joblib') # Replace with your path
31
+
32
+ def clean_text(text):
33
+ # Implement your text cleaning logic here (e.g., lowercase, remove punctuation, etc.)
34
+ # This example simply lowercases the text
35
+ return text.lower()
36
+
37
+ def predict_sentiment(user_input):
38
+ """Predicts sentiment for a given user input."""
39
+ cleaned_text = clean_text(user_input)
40
+ input_matrix = tfidf_vectorizer.transform([cleaned_text])
41
+ prediction = model.predict(input_matrix)[0]
42
+
43
+ if isinstance(model.classes_, LabelEncoder):
44
+ prediction = model.classes_.inverse_transform([prediction])[0]
45
+
46
+ return prediction
47
+
48
+ # Get user input
49
  user_input = input("Enter a sentence: ")
 
 
 
 
 
 
 
 
 
50
 
51
+ # Predict sentiment
52
+ predicted_sentiment = predict_sentiment(user_input)
53
+
54
+ print(f"Predicted Sentiment: {predicted_sentiment}")
55
+
56
+ # Optional: Save predictions (modify paths as needed)
57
+ try:
58
+ df_existing = pd.read_excel('/content/output_predictions.xlsx')
59
  except FileNotFoundError:
60
+ df_existing = pd.DataFrame()
61
+
62
+ new_prediction = pd.DataFrame({'User_Input': [user_input], 'Predicted_Sentiment': [predicted_sentiment]})
63
+ df_combined = pd.concat([df_existing, new_prediction], ignore_index=True)
64
+ df_combined.to_excel('/content/output_predictions.xlsx', index=False)